Homework Kernel Methods

Quentin Duchemin

February 2019

Exercise 1

We recall some useful results for the exercise :

Theorem 1. Let \mathcal{X} be a set. If $(P_i)_{i\geq 0}$ is a sequence of p.d. kernels that converges pointwisely to a function P, then P is a p.d. kernel.

Theorem 2. Let \mathcal{X} be a set.

If $P_1 : \mathcal{X} \to \mathbb{R}$ and $P_2 : \mathcal{X} \to \mathbb{R}$ are p.d. kernels, then $P_1 + P_2$ is a p.d. kernel. A trivial induction gives us that for any finite family of p.d. kernels $(P_i)_{i \in [\![1,n]\!]}$ $(n \in \mathbb{N})$, $\sum_{i=1}^n P_i$ is a p.d. kernel.

Theorem 3. Let \mathcal{X} be a set.

If $P : \mathcal{X} \to \mathbb{R}$ is a p.d. kernel, then P^2 (understood as the Hadamard product) is a p.d. kernel. A trivial induction gives us that P^k is a p.d. kernel for all $k \in \mathbb{N}$.

1. • The kernel

$$K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(x, y) \mapsto \cos(x - y)$$

is clearly symmetric since the function cosinus is an even function.

• Let $N \in \mathbb{N}$, $(\alpha_i)_{i=1}^N \in \mathbb{R}^N$ and $(x_i)_{i=1}^N \in \mathbb{R}^N$.

We recall the usual identity for the cosinus of a difference : $\forall (a,b) \in \mathbb{R}^2$, $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ which leads to :

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j K(x_i, x_j) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \cos(x_i - x_j)$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (\cos(x_i) \cos(x_j) + \sin(x_i) \sin(x_j))$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \cos(x_i) \cos(x_j) + \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \sin(x_i) \sin(x_j)$$
$$= \left(\sum_{i=1}^{N} \alpha_i \cos(x_i)\right)^2 + \left(\sum_{i=1}^{N} \alpha_i \sin(x_i)\right)^2$$
$$> 0$$

Hence, the kernel K is positive definite.

2. • Let $\mathcal{X} = \{x \in \mathbb{R}^p : ||x||_2 < 1\}$. The kernel

$$\begin{split} K: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \\ (x,y) \mapsto \frac{1}{1 - x^T y} \end{split}$$

is symmetric since $\forall (x, y) \in \mathcal{X}^2, x^T y = y^T x$.

• We denote by \overline{K} the linear kernel on \mathcal{X} , i.e.

$$\overline{K}: \mathcal{X} imes \mathcal{X} o \mathbb{R}$$
 $(x, y) \mapsto x^T y$

We remark that $\forall (x,y) \in \mathcal{X}^2$, the Cauchy-Schwarz inequality gives us $|x^T y| = |\langle x|y \rangle_{\mathbb{R}^p} | \leq ||x||_2 ||y||_2 \langle 1$ by definition of the set \mathcal{X} . This fact allows us to express the kernel K using the Taylor series expansion of the function $f(x) = \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \forall x \in]-1, 1[.$

Thus $K(x,y) = \lim_{n \to +\infty} \sum_{k=0}^{n} (\overline{K}(x,y))^{k}$.

- We know from the course that the Hadamard product of two p.d. kernels is a p.d. kernel. By induction, we get that for all $k \in \mathbb{N}$, the kernel $(x, y) \mapsto \overline{K}(x, y)^k$ is a p.d. kernel (*) (since the linear kernel is a p.d. kernel). This is the theorem (3).
- We know form the course that the sum of two p.d. kernels is a p.d. kernel. Thus, by induction, for all $n \in \mathbb{N}$, $\sum_{k=0}^{n} (\overline{K}(x,y))^k$ is a p.d. kernel using (*).
- Using the theorem 1, $K(x,y) = \lim_{n \to +\infty} \sum_{k=0}^{n} (\overline{K}(x,y))^{k}$ is a p.d. kernel using the previous item.

Hence, the kernel K is positive definite.

3. • Let (Ω, \mathcal{A}, P) a probability space. The kernel

$$K: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$$
$$(A, B) \mapsto P(A \cap B) - P(A)P(B)$$

is clearly symmetric.

• We remark that for all $(A, B) \in \mathcal{A}^2$,

$$P(A \cap B) - P(A)P(B) = \mathbb{E}[\mathbb{1}_{A \cap B}] - \mathbb{E}[\mathbb{1}_{A}]\mathbb{E}[\mathbb{1}_{B}]$$
$$= \mathbb{E}[\mathbb{1}_{A}\mathbb{1}_{B}] - \mathbb{E}[\mathbb{1}_{A}]\mathbb{E}[\mathbb{1}_{B}]$$
$$= Cov[\mathbb{1}_{A}, \mathbb{1}_{B}] \quad (*)$$

Let $N \in \mathbb{N}$, $(\alpha_i)_{i=1}^N \in \mathbb{R}^N$ and $(A_i)_{i=1}^N \in \mathcal{A}^N$. Using (*) and the bilinearity of the Covariance, we have :

$$\begin{split} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} K(A_{i}, A_{j}) &= \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} Cov[\mathbb{1}_{A_{i}}, \mathbb{1}_{A_{j}}] \\ &= Cov \left[\sum_{i=1}^{N} \alpha_{i} \mathbb{1}_{A_{i}} , \sum_{j=1}^{N} \alpha_{j} \mathbb{1}_{A_{j}} \right] \\ &= Var \left[\sum_{i=1}^{N} \alpha_{i} \mathbb{1}_{A_{i}} \right] \\ &\geq 0 \end{split}$$

Hence, the kernel K is positive definite.

4. • Let \mathcal{X} be a set and $f, g: \mathcal{X} \to \mathbb{R}_+$ two non-negative functions. The kernel

$$\begin{split} K: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \\ (x, y) \mapsto \min\{f(x)g(y), f(y)g(x)\} \end{split}$$

is clearly symmetric.

• We adopt the convention that for all $a \in \mathbb{R}$, $\frac{a}{0} = 0$. This convention allows us to have for all $(x, y) \in \mathcal{X}$,

$$K(x,y) = \min\{f(x)g(y), f(y)g(x)\} = \frac{1}{g(x)g(y)} \min\left\{\frac{f(x)}{g(x)}, \frac{f(y)}{g(y)}\right\}$$

We have used the fact that f and g are non negative. Moreover, the convention adopted makes this equality holds even when g(x) = 0 or g(y) = 0.

Using this reformulation we have :

$$\begin{split} K(x,y) &= \min\{f(x)g(y), f(y)g(x)\} \\ &= \frac{1}{g(x)g(y)} \min\left\{\frac{f(x)}{g(x)}, \frac{f(y)}{g(y)}\right\} \\ &= \frac{1}{g(x)g(y)} \int_{0}^{+\infty} \mathbb{1}_{\{t \leq \frac{f(x)}{g(x)}\}} \mathbb{1}_{\{t \leq \frac{f(y)}{g(y)}\}} dt \\ &= < t \mapsto \frac{1}{g(x)} \mathbb{1}_{\{t \leq \frac{f(x)}{g(x)}\}} \mid t \mapsto \frac{1}{g(y)} \mathbb{1}_{\{t \leq \frac{f(y)}{g(y)}\}} > \quad (*) \end{split}$$

where $\langle . | . \rangle$ denotes the usual scalar product on $L^2(\mathbb{R}_+)$. Let $N \in \mathbb{N}$, $(\alpha_i)_{i=1}^N \in \mathbb{R}^N$ and $(x_i)_{i=1}^N \in \mathcal{X}^N$.

Using (*) and the bilinearity of the scalar product, we have :

$$\begin{split} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} K(x_{i}, x_{j}) &= \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} < t \mapsto \frac{1}{g(x_{i})} \mathbb{1}_{\{t \leq \frac{f(x_{i})}{g(x_{i})}\}} \mid t \mapsto \frac{1}{g(x_{j})} \mathbb{1}_{\{t \leq \frac{f(x_{j})}{g(x_{j})}\}} > \\ &= < t \mapsto \sum_{i=1}^{N} \alpha_{i} \frac{1}{g(x_{i})} \mathbb{1}_{\{t \leq \frac{f(x_{i})}{g(x_{i})}\}} \mid \sum_{j=1}^{N} \alpha_{j} t \mapsto \frac{1}{g(x_{j})} \mathbb{1}_{\{t \leq \frac{f(x_{j})}{g(x_{j})}\}} > \\ &= \left\| t \mapsto \sum_{i=1}^{N} \alpha_{i} \frac{1}{g(x_{i})} \mathbb{1}_{\{t \leq \frac{f(x_{i})}{g(x_{i})}\}} \right\|_{L^{2}}^{2} \\ &\geq 0 \end{split}$$

Hence, the kernel K is positive definite.

5. We consider a non-empty finite set E and we define $\forall A, B \subset E$, $K(A, B) = \frac{A \cap B}{A \cup B}$ with the convention $\frac{0}{0} = 0$. We note n = |E|.

We start by doing to useful remarks for what follows.

- <u>Remark 1</u>: We know that $\forall x \in [0, 1[, \sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}]$ as the sum of a geometric sequence.
- <u>Remark 2</u>: If we consider $A, B \subset E$ with A or/and B different from \emptyset , $n = |E| > |A^c \cap B^c|$ (where $A^c = E \setminus A$). With the first remark we are allowed to write in this case :

$$\sum_{k=0}^{+\infty} \left(\frac{|A^c \cap B^c|}{n} \right)^k = \frac{1}{1 - \frac{|A^c \cap B^c|}{n}} \quad (*)$$

Please note that if A or B is the empty set, then K(A, B) = 0. Thus, without loss of generality, we will suppose from now that the subsets of E considered are non empty. Thus, we have :

$$\begin{split} K(A,B) &= \frac{|A \cap B|}{|A \cup B|} \\ &= \frac{|A \cap B|}{n - |A^c \cap B^c|}, \text{ since } (A \cup B)^c = A^c \cap B^c. \\ &= \frac{|A \cap B|}{n} \times \frac{1}{1 - \frac{|A^c \cap B^c|}{n}} \\ &= \frac{|A \cap B|}{n} \times \sum_{k=0}^{+\infty} \left(\frac{|A^c \cap B^c|}{n}\right)^k \end{split}$$

We define the functions :

$$K_1: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathbb{R}$$

 $(C, D) \mapsto \frac{|C \cap D|}{n}$

and

$$K_2: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathbb{R}$$

 $(C, D) \mapsto \frac{|C^c \cap D^c|}{n}$

 K_1 and K_2 are two positive definite kernels. In order to justify this claim, we endow $(E, \mathcal{P}(E))$ with the uniform probability distribution denoted \mathbb{P} . Then, for all $(C, D) \in \mathcal{P}(E)^2$,

$$K_1(C,D) = \frac{|C \cap D|}{n} = \mathbb{E}\left[\mathbb{1}_C \mathbb{1}_D\right] = <\mathbb{1}_C \mid \mathbb{1}_D > (*)$$

where $\langle . | . \rangle$ denotes the usual scalar product for L^2 random variables.

Thanks to the Aronszajn's theorem, we deduce from (*) that K_1 is a positive definite kernel.

The same argument also holds for K_2 since $K_2(C,D) = < \mathbb{1}_{C^c} \mid \mathbb{1}_{D^c} >$. Thus, K_2 is also a positive definite kernel.

We can now prove that K is a positive definite kernel. Indeed :

- Using the theorem (3) and since K_2 is a p.d. kernel, we have that for all $k \in \mathbb{N}$, K_2^k is a p.d. kernel.
- Then, using the previous item and the theorem (2), we get the for all $N \in \mathbb{N}$, $\sum_{k=1}^{N} K_2^k$ is a p.d. kernel.
- Using the previous item, the theorem (1) and the equality (*), we know that the kernel

$$K_3 := \sum_{k=0}^{+\infty} K_2^k : (A, B) \mapsto \sum_{k=0}^{+\infty} \left(\frac{|A^c \cap B^c|}{n} \right)^k = \frac{1}{1 - \frac{|A^c \cap B^c|}{n}}$$
 is a p.d. kernel.

• Finally, since K_1 and K_3 are p.d. kernels and since $K = K_1 K_3$ (hadamard product), we have using the theorem (3) that K is p.d. kernel.

Hence, K is a positive definite kernel.

Exercise 2

1. K_1 and K_2 are two positive kernels and α, β are two positive scalars. We deduce that αK_1 and βK_2 are two positive kernels (as the multiplication by a positive scalar of a positive kernel). Then, we have that $\alpha K_1 + \beta K_2$ is a positive kernel as the sum of two positive kernels (using theorem (2)).

We denote \mathcal{H}_1 (resp. \mathcal{H}_2) the RKHS associated with the p.d. kernel K_1 (resp. K_2). We note $\langle . | . \rangle_1$ (resp. $\langle . | . \rangle_2$) the scalar product associated with \mathcal{H}_1 (resp. \mathcal{H}_2).

• First we look at the topology of $\mathcal{H}_1 + \mathcal{H}_2$. We denote $E = \mathcal{H}_1 \times \mathcal{H}_2$. This set is a Hilbert space if we equip it with the norm $||.||_E : (f_1, f_2) \mapsto \sqrt{\frac{1}{\alpha} ||f_1||_1^2 + \frac{1}{\beta} ||f_2||_2^2}$,

We want to compare the topologies of $\mathcal{H}_1 + \mathcal{H}_2$ and E. A direct link between these spaces is the natural surjection

$$s: E \to \mathcal{H}_1 + \mathcal{H}_2$$
$$(f_1, f_2) \mapsto f_1 + f_2$$

We are going to try to make s injective. In order to do so, let's consider $N = s^{-1}(\{0\})$. We will begin by proving that N is a closed subset of E:

Let $(f_n, -f_n)$ be a sequence of elements of N converging in E to (f, g). By definition of the norm $||.||_E$, $(f_n)_{n\geq 1}$ converges in \mathcal{H}_1 to f and $(-f_n)_{n\geq 1}$ converges in \mathcal{H}_2 to g. Since convergence in a RKHS implies ponctual convergence, we will have f = -g an therefore $(f, g) \in N$. N is therefore a closed subset of E.

Since N is closed, E is equal to the direct sum of N and its orthogonal complement N^{\perp} . The restriction \tilde{s} of s to N^{\perp} will therefore be a bijection.

Now that we have a linear bijection, we can equip $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ with an Hilbertian structure inherited from *E*. With the norm $||.||_{\mathcal{H}} : f \mapsto ||\tilde{s}^{-1}(f)||_E$, $\mathcal{H}_1 + \mathcal{H}_2$ is indeed a Hilbert space.

- It is obvious that for all $x \in \mathcal{X}$, $K_x = K(x, .) = \alpha K_1(x, .) + \beta K_2(x, .)$ belongs to $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ (since $K_1(x, .) \in \mathcal{H}_1$ and $K_2(x, .) \in \mathcal{H}_2$ by the definition of the reproducing kernel of a RKHS).
- In fact, to prove that $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ endowed with the norm we just defined is the RKHS of $\alpha K_1 + \beta K_2$, we still need to prove the reproducing property: let $x \in \mathcal{X}$ and $f \in \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$. We can write $f = \tilde{s}(f_1, f_2)$ and $K_x = \tilde{s}(A_x, B_x)$ where (f_1, f_2) and (A_x, B_x) live in N^{\perp} . Thus,

$$< f, K_x >_{\mathcal{H}_1 + \mathcal{H}_2} = < (f_1, f_2), (A_x, B_x) >_E = < (f_1, f_2), (\alpha K_{1x}, \beta K_{2x}) + (A_x - \alpha K_{1x}, B_x - \beta K_{2x}) >_E$$

but, since $s(A_x - \alpha K_{1x}, B_x - \beta K_{2x}) = A_x - \alpha K_{1x} + B_x - \beta K_{2x} = K_x - K_x = 0$, we have that the vector $(A_x - \alpha K_{1x}, B_x - \beta K_{2x})$ belongs to N. Therefore, it is orthogonal to every element in N^{\perp} , and in particular to (f_1, f_2) . Consequently, $\langle f, K_x \rangle_{\mathcal{H}} = \langle (f_1, f_2), (\alpha K_1(x, .), \beta K_2(x, .)) \rangle_E = f_1(x) + f_2(x) = f(x)$ and the reproducing property is true.

 $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ is therefore the RKHS of $\alpha K_1 + \beta K_2$.

2. We consider $\psi : \mathcal{X} \to \mathcal{F}$ where \mathcal{F} is a Hilbert space. The kernel

$$K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$
$$(x, x') \mapsto \langle \psi(x), \psi(x') \rangle_{\mathcal{F}}$$

is positive definite as a direct consequence of the Aronzsajn's theorem.

We are now going to show that the RKHS associated to positive definite kernel K is the image of the operator T defined by :

$$\begin{array}{ll} \forall f \in \mathcal{F}, \quad Tf: \mathcal{X} \rightarrow \mathbb{R} \\ & x \mapsto (Tf)(x) := < f, \psi(x) >_{\mathcal{F}} \end{array} \end{array}$$

First, we recall a result seen during the class which will be the cornerstone of the proof :

Theorem 4. Any kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ positive definite is a reproducing kernel.

Useful elements of the proof for what follows :

We define \mathcal{H}_0 the vector space spanned by the functions K_x for $x \in \mathcal{X}$. The scalar product on \mathcal{H}_0 is given by :

$$< f, g >_{\mathcal{H}_0} = \sum_{i,j} a_i b_j K(x_i, x_j)$$

where we have decomposed f and g as $f = \sum_{i} a_i K_{x_i}$ and $g = \sum_{j} b_j K_{x_j}$ (we proved in class that the definition is independent of the decomposition). Then, the RKHS \mathcal{H}_K related to the kernel K is obtained by taking the completion of \mathcal{H}_0 to a Hilbert space.

Now, we have all the tools to prove our claim :

$$\mathcal{H}_K = Im(T) = \{Tf, f \in \mathcal{F}\}.$$

• $\mathcal{H}_0 \subset Im(\mathbf{T}).$

Indeed, let $x \in \mathcal{X}$. For all $y \in \mathcal{X}$, $K_x(y) = \langle \psi(x), \psi(y) \rangle_{\mathcal{F}} = (T\psi(x))(y)$. So Im(T) contains all the functions K_x for $x \in \mathcal{X}$. Since Im(T) is a linear space, then linear span of $\{K_x, x \in \mathcal{X}\}$, that is \mathcal{H}_0 , will be in Im(T).

• **T** : **Span**($\psi(\mathbf{x}), \mathbf{x} \in \mathcal{X}$) $\rightarrow \mathcal{H}_{\mathbf{0}}$ is isometric. Since for all $x \in \mathcal{X}, T\psi(x) = K_x$, we have $T(\sum_x \alpha_x \psi(x)) = \sum \alpha_x K_x$. Hence,

$$< T\left(\sum_{x} \alpha_{x}\psi(x)\right), T\left(\sum_{y} \beta_{y}\psi(y)\right) >_{\mathcal{H}_{0}} = <\sum_{x} \alpha_{x}K_{x}, \sum_{y} \beta_{y}K_{y} >_{\mathcal{H}_{0}}$$

$$= \sum_{x,y} \alpha_{x}\beta_{y}K(x,y) \text{ using the construction of } <.,.>_{\mathcal{H}_{0}} \text{ recalled in theorem 4}$$

$$= \sum_{x,y} \alpha_{x}\beta_{y} < \psi(x), \psi(y) >_{\mathcal{F}}$$

$$= <\sum_{x} \alpha_{x}\psi(x), \sum_{y} \beta_{y}\psi(y) >_{\mathcal{F}}.$$

This proves that $T: Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric.

Clearly,
$$T\left(Span(\psi(x), x \in \mathcal{X})\right) = \mathcal{H}_0.$$

 $\mathcal{F} = \ker(\mathbf{T}) \bigoplus \ker(\mathbf{T})^{\perp}$ with $\ker(T)^{\perp} = \overline{Span(\psi(x), x \in \mathcal{X})}.$
 $- \operatorname{Let} f \in \ker(T).$
So, $Tf = 0$ ie $(Tf)(x) = \langle f, \psi(x) \rangle_{\mathcal{F}} = 0 \ \forall x \in \mathcal{X}.$ Since T is linear, this means that $f \perp Span(\psi(x), x \in \mathcal{X})$, i.e.

$$\ker(T) \subset Span(\psi(x), \ x \in \mathcal{X})^{\perp}.$$

- Let $f \in Span(\psi(x), x \in \mathcal{X})^{\perp} = \{\psi(x), x \in \mathcal{X}\}^{\perp}$. Then, for all $x, 0 = \langle f, \psi(x) \rangle_{\mathcal{F}} = (Tf)(x) \implies Tf = 0$ i.e. $f \in \ker(T)$. Hence :

$$Span(\psi(x), x \in \mathcal{X})^{\perp} \subset \ker(T).$$

This proves that :

$$\ker(\mathbf{T}) = \mathbf{Span}(\psi(\mathbf{x}), \ \mathbf{x} \in \mathcal{X})^{\perp}$$

- By the previous item,

$$\ker(T)^{\perp} = \left(Span(\psi(x), \ x \in \mathcal{X})^{\perp}\right)^{\perp} = \overline{Span(\psi(x), \ x \in \mathcal{X})}$$

This shows in particular that $\ker(T)^{\perp}$ is closed. We are able to write

$$\mathcal{F} = \ker(T) \bigoplus \ker(T)^{\perp}.$$

• Since $T: Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric and surjective, and since \mathcal{H}_0 is dense in \mathcal{H}_K (by construction: see theorem (4)), it follows that $T: Span(\psi(x), x \in \mathcal{X}) \to \overline{\mathcal{H}_0} = \mathcal{H}_K$ is surjective ((*), see below for further

$$= \ker(T)^{\perp}$$

justification). Hence, we have :

$$\mathcal{H}_K = T(\ker(T)^{\perp}) = T(\ker(T) \bigoplus \ker(T)^{\perp}) = T(\mathcal{F}) = Im(T).$$

Comments

This result of the question 2 allows us to have another point of view on a RKHS. Indeed, we have shown that for a kernel K defined by a feature map ψ , the RKHS related to K is :

$$\mathcal{H}_K = Im(T) = \{ x \mapsto < f, \psi(x) >_{\mathcal{F}} \text{ such that } f \in \mathcal{F} \}.$$

This representation implies that the elements of the RKHS are inner products of elements in the feature space and can accordingly be seen as **hyperplanes**.

Further justification for (*).

 $T: Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric, and linear. We can thus apply the theorem to extend linear function uniformly continuous (here, T is uniformly continuous because isometric). So, we can extend T as a linear isometry on $\overline{Span(\psi(x), x \in \mathcal{X})}$. We still call this new function T. The miracle is that this function T is in fact surjective in H_K .

Indeed, let $g \in \mathcal{H}_K$. Since \mathcal{H}_0 is dense in \mathcal{H}_K , there exists a sequence $(g_n)_n$ in \mathcal{H}_0 such that $||g_n - g||_{\mathcal{H}_0} \to 0$. Since $T : Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is surjective, for all $n \in \mathbb{N}$, there exists $f_n \in \mathcal{F}$ such that $Tf_n = g_n$. Since $(g_n)_n$ is convergent, it is in particular a Cauchy sequence and the fact that T is isometric gives us that for all $n, m \in \mathbb{N}$,

$$||g_m - g_n||_{\mathcal{H}_0} = ||Tf_m - Tf_n||_{\mathcal{H}_0} = ||T(f_m - f_n)||_{\mathcal{H}_0} = ||f_m - f_n||_{\mathcal{F}}.$$

Hence, $(f_n)_n$ is a Cauchy sequence in the Hilbert space \mathcal{F} . Hence, it converges to some $f \in \mathcal{F}$. But, since $(f_n)_n \in Span(\psi(x), x \in \mathcal{X})^{\mathbb{N}}$, we have that $f \in \overline{Span(\psi(x), x \in \mathcal{X})}$. Hence, $g \in \mathcal{H}_K$ admits the preimage f by T which belongs to $\overline{Span(\psi(x), x \in \mathcal{X})}$.

Exercise 3

1. We recall a theorem studied in class :

Theorem 5. The Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ is a RKHS if and only if for any $x \in \mathcal{X}$, the mapping

$$F_x: \mathcal{H} \to \mathbb{R}$$
$$f \mapsto f(x)$$

is continuous.

In our case, $\mathcal{H} = \{f : [0,1] \to \mathbb{R} \text{ absolutely continuous }, f' \in L^2([0,1]), f(0) = 0\}$ endowed with the bilinear form : $\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 f'(u)g'(u)du.$

- H is a prehilbert space of functions
 - $-\mathcal{H}$ is a vector space of functions and $< ., .>_{\mathcal{H}}$ is a bilinear form that satisfies $< f, f>_{\mathcal{H}} \ge 0$.
 - f absolutely continuous on [0, 1] implies differentiable almost everywhere and $\forall x \in [0, 1]$, $f(x) = f(0) + \int_0^x f'(u) du$. Hence:

$$\forall f \in \mathcal{H}, \ \forall x \in [0,1], \quad |f(x)| = |f(x) - \underbrace{f(0)}_{=0 \text{ since } f \in \mathcal{H}} | = |\int_0^x f'(u) du| \le \int_0^x \underbrace{|f'(u)|}_{\ge 0} du \le \int_0^1 |f'(u)| du$$
$$= \int_0^1 \sqrt{|f'(u)|^2} du \le \sqrt{\int_0^1 |f'(u)|^2} du \le \sqrt{\int_0^1 |f'(u)|^2} du \le f, f >_{\mathcal{H}}^{1/2}$$
(1)

where the last inequality is obtained by using the Jensen inequality with the concave function $t \mapsto \sqrt{t}$. Therefore $\langle f, f \rangle_{\mathcal{H}} = 0 \implies f = 0$, showing that $\langle ., . \rangle_{\mathcal{H}}$ is an inner product. Thus, \mathcal{H} is a preHilbert space.

• H is a Hilbert space

Let $(f_n)_{n \in \mathbb{N}}$ a Cauchy sequence of \mathcal{H} . Then, $(f'_n)_{n \in \mathbb{N}}$ is a Cauchy sequence of $L^2([0,1])$ (by definition of the norm on \mathcal{H}), and thus convergences to some $g \in L^2([0,1])$ for the norm $||.||_{L^2}$ (by completeness).

Using the inequality (1), for all $x \in [0,1]$, $(f_n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence of \mathbb{R} which is complete and thus converges to some f(x). Moreover,

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \int_0^x f'_n(u) du = \int_0^x g(u) du$$

where we have used an interversion between limit and integral which is possible thanks to the L^2 convergence of $(f'_n)_n$ to g. This shows that f is absolutely continuous and f' = g almost everywhere, in particular, $f' \in L^2([0,1])$.

Finally, $f(0) = \lim_{n \to +\infty} f_n(0) = 0$. Therefore, $f \in \mathcal{H}$ and $\lim_{n \to +\infty} ||f_n - f||_{\mathcal{H}} = ||f'_n - g||_{L^2} = 0$. We have proved then \mathcal{H} is a Hilbert space.

• H is a RKHS

Let $x \in [0, 1]$. For all $f \in \mathcal{H}$,

$$|F_x(f)| = |f(x)| \le ||f||_{\mathcal{H}} \text{ using } (1).$$

Since the mapping F_x is linear, the above inequality proves that for all $x \in \mathcal{X}$, F_x is continuous. We deduce that \mathcal{H} is a RKHS with the theorem 5.

• Reproducing kernel of H

Consider the function

$$\begin{aligned} K: [0,1] \times [0,1] &\to \mathbb{R} \\ (x,y) &\mapsto \min(x,y) = \left\{ \begin{array}{ll} y & \text{if } y < x \\ x & \text{if } x \leq y \end{array} \right. \end{aligned}$$

For all $x \in [0,1]$, the function $K_x : t \mapsto K(x,t)$ belongs to \mathcal{H} because :

- it is absolutely continuous on [0, 1] since :
 - * K_x has derivative almost everywhere (except in x)
 - * K'_x is Lebsgue integrable

*
$$\forall t \in [0,1], K_x(t) = K_x(0) + \int_0^t K'_x(u) du$$

- $K'_x = \mathbb{1}_{[0,x]}$ which belongs to $L^2([0,1])$
- and we finally have $K_x(0) = 0$.

Moreover for all
$$x \in [0,1]$$
 and for all $f \in \mathcal{H}$, $\langle f, K_x \rangle = \int_0^1 f'(u) K'_x(u) du = \int_0^1 f'(u) \mathbb{1}_{[0,x]} du = \int_0^x f'(u) = f(x) - \underbrace{f(0)}_{x=0} = f(x)$. So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS \mathcal{H} .

- 2. We consider now $\mathcal{H} = \{f : [0,1] \to \mathbb{R} \text{ absolutely continuous }, f' \in L^2([0,1]), f(0) = f(1) = 0\}$ endowed with the bilinear form : $\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 f'(u)g'(u)du.$
 - H is a prehilbert space of functions

 \mathcal{H} is a vector space of functions and $\langle ., . \rangle_{\mathcal{H}}$ is an inner product thanks to the previous question. Thus, \mathcal{H} is a preHilbert space.

• H is a Hilbert space

Let $(f_n)_{n \in \mathbb{N}}$ a Cauchy sequence of \mathcal{H} . Then, $(f'_n)_{n \in \mathbb{N}}$ is a Cauchy sequence of $L^2([0,1])$ (by definition of the norm on \mathcal{H}), and thus convergences to some $g \in L^2([0,1])$.

Using the inequality (1), for all $x \in [0,1]$, $(f_n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence of \mathbb{R} which is complete and thus converges to some f(x). Moreover,

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \int_0^x f'_n(u) du = \int_0^x g(u) du$$

where we have used an interversion between limit and integral which is possible thanks to the L^2 convergence of $(f'_n)_n$ to g. This shows that that f is absolutely continuous and f' = g almost everywhere, in particular, $f' \in L^2([0,1])$.

Finally, $f(0) = \lim_{n \to +\infty} f_n(0) = 0$ and $f(1) = \lim_{n \to +\infty} f_n(1) = 0$. Therefore, $f \in \mathcal{H}$ and $\lim_{n \to +\infty} ||f_n - f||_{\mathcal{H}} = ||f'_n - g||_{L^2} = 0$.

• <u>H is a RKHS</u>

The computations derived in the previous question to show that the mapping F_x is continuous for all $x \in [0, 1]$ still hold by definition of \mathcal{H} (which is included in the Hilbert space studied in the previous question). Thus, using the theorem 5, we have that \mathcal{H} is a RKHS.

• Reproducing kernel of H Consider the function

 $\begin{aligned} K: [0,1] \times [0,1] &\to \mathbb{R} \\ (x,y) &\mapsto \begin{cases} (1-x)y & \text{if } y < x \\ -x(y-x) + (1-x)x & \text{if } x \leq y \end{cases} \end{aligned}$

For all $x \in [0, 1]$, the function $K_x : t \mapsto K(x, t)$ belongs to \mathcal{H} because :

- it is absolutely continuous on [0, 1] since :
 - * K_x has derivative almost everywhere (except in x)
 - * K'_x is Lebsgue integrable
 - * $\forall t \in [0,1], K_x(t) = K_x(0) + \int_0^t K'_x(u) du$
- $-K'_{x} = (1-x)\mathbb{1}_{[0,x]} x\mathbb{1}_{[x,1]}$ which belongs to $L^{2}([0,1])$
- and we finally have $K_x(0) = K_x(1) = 0$.

Moreover for all
$$x \in [0,1]$$
 and for all $f \in \mathcal{H}, \langle f, K_x \rangle_{\mathcal{H}} = \int_0^1 f'(u) K'_x(u) du = \int_0^x f'(u) (1-x) du - \int_x^1 f'(u) x du = (1-x)(f(x) - \underbrace{f(0)}_{=0}) - x(\underbrace{f(1)}_{=0} - f(x)) = f(x)$. So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS \mathcal{H} .

- 3. We consider now $\mathcal{H} = \{f : [0,1] \to \mathbb{R} \text{ absolutely continuous }, f' \in L^2([0,1]), f(0) = f(1) = 0\}$ endowed with the bilinear form : $\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 (f(u)g(u) + f'(u)g'(u))du.$
 - H is a prehilbert space of functions
 - $-\mathcal{H}$ is a vector space of functions and $< ., . >_{\mathcal{H}}$ is a bilinear form that satisfies $< f, f >_{\mathcal{H}} \ge 0$.
 - f absolutely continuous on [0, 1] implies differentiable almost everywhere and $\forall x \in [0, 1]$, $f(x) = f(0) + \int_0^x f'(u) du$. Hence:

$$\forall f \in \mathcal{H}, \quad |f(x)| = |f(x) - \underbrace{f(0)}_{=0 \text{ since } f \in \mathcal{H}} | = |\int_{0}^{x} f'(u) du| \leq \int_{0}^{x} \underbrace{|f'(u)|}_{\geq 0} du \leq \int_{0}^{1} |f'(u)| du$$

$$= \int_{0}^{1} \sqrt{|f'(u)|^{2}} du \underbrace{\leq}_{\text{since } \sqrt{\cdot} \text{ is an increasing function}}_{\text{since } \sqrt{\cdot} \text{ is an increasing function}} \int_{0}^{1} \sqrt{|f'(u)|^{2} + |f(u)|^{2}} du$$

$$\leq \sqrt{\int_{0}^{1} |f'(u)|^{2} + |f(u)|^{2} du} = \langle f, f \rangle_{\mathcal{H}}^{1/2}$$

$$(2)$$

where the last inequality is obtained by using the Jensen inequality with the concave function $t \mapsto \sqrt{t}$. Therefore $\langle f, f \rangle_{\mathcal{H}} = 0 \implies f = 0$, showing that $\langle ., . \rangle_{\mathcal{H}}$ is an inner product. Thus, \mathcal{H} is a preHilbert space.

• H is a Hilbert space

Let $(f_n)_{n \in \mathbb{N}}$ a Cauchy sequence of \mathcal{H} .

- $(f_n)_{n \in \mathbb{N}}$ and $(f'_n)_{n \in \mathbb{N}}$ are Cauchy sequences in $L^2([0, 1])$ $(f_n)_{n \in \mathbb{N}}$ (resp. $(f'_n)_{n \in \mathbb{N}}$) is a Cauchy sequence of $L^2([0, 1])$ (by definition of the norm on \mathcal{H}), and thus convergences to some $g_0 \in L^2([0, 1])$ (resp. $g_1 \in L^2([0, 1])$).
- **Theorem** : Convergence in $L^2([0,1]) \implies$ Convergence in $\mathcal{D}'([0,1])$ Let $\phi \in \mathcal{D}([0,1])$ with compact support K_{ϕ} and $(h_n)_{n \in \mathbb{N}}$ a sequence of $L^2([0,1])$ converging to $h \in L^2([0,1])$. Since $h, h_n \in L^1_{loc}([0,1])$, we can consider the distributions induced by these functions. Moreover, the Cauchy Scharwz inequality gives us :

$$| < h, h_n, \phi >_{\mathcal{D}', \mathcal{D}} | = \left| \int_{[0,1]} (h - h_n) \phi \right| \le ||h - h_n|_{L^2} ||\phi||_{L^2}.$$

Thus, $(h_n)_n$ converges to h in the distribution sens.

 $-g'_0 = g_1$ in the distribution sens and then in L^2 . Using the previous item, we get that $f_n \to g_0$ in $\mathcal{D}'([0,1])$ and $f'_n \to g_1$ in $\mathcal{D}'([0,1])$. From $f_n \to g_0$ in $\mathcal{D}'([0,1])$, we deduce that $f'_n \to g'_0$ in $\mathcal{D}'([0,1])$. Using the uniqueness of the limit in $\mathcal{D}'([0,1])$, we have $g'_0 = g_1$ in the distribution sens. Since $g_1 \in L^2([0,1])$, we can deduce that $g'_0 \in L^2([0,1])$, and that the equality $g'_0 = g_1$ is also true in $L^2([0,1])$.

We have shown that $f_n \to g_0$ and $f'_n \to g'_0$ in L^2 . Thus, $f_n \to g_0$ in \mathcal{H} . We only need to show that g_0 belongs to \mathcal{H} , which is true since :

- The inequality (2) gives that convergence in \mathcal{H} implies pointwise convergence. Thus, $g_0(0) = \lim_{n \to +\infty} f_n(0) = 0$ and $g'_0(1) = \lim_{n \to +\infty} f_n(1) = 0$.
- We have already shown that $g'_0 = g_1 \in L^2([0,1])$.
- Finally, g_0 is absolutely continuous since $g_0(x) = \int_0^x g'_0(u) du$.
- <u>H is a RKHS</u>

Let $x \in [0, 1]$. For all $f \in \mathcal{H}$,

$$|F_x(f)| = |f(x)| \le ||f||_{\mathcal{H}} \text{ using } (2).$$

Thus, using the theorem 5, we have that \mathcal{H} is a RKHS.

• Reproducing kernel of H Consider the function

$$\begin{split} K:[0,1]\times[0,1]\to\mathbb{R}\\ (x,y)\mapsto \left\{ \begin{array}{ll} \left(t\mapsto e^{-t}+(1-e^{-x})\frac{sh(t)}{sh(x)}-1\right)'(y) & \text{if } y< x\\ 0 & \text{if } x\leq y \end{array} \right. \end{split}$$

i.e.

$$\begin{split} K: [0,1] \times [0,1] \to \mathbb{R} \\ (x,y) \mapsto \left\{ \begin{array}{ll} -e^{-y} + (1-e^{-x})\frac{ch(y)}{sh(x)} & \text{if } y < x \\ 0 & \text{if } x \leq y \end{array} \right. \end{split}$$

For all $x \in [0, 1]$, the function $K_x : t \mapsto K(x, t)$ belongs to \mathcal{H} because :

- it is absolutely continuous on [0, 1] since :

- * K_x has derivative almost everywhere (except in x)
- * K'_x is Lebsgue integrable

*
$$\forall t \in [0,1], K_x(t) = K_x(0) + \int_0^t K'_x(u) du$$

 $- \forall y \in [0,1], K'_x(y) = \left(-\sin(y) + \frac{1 - \cos(x)}{\sin(x)} \cos(y) \right) \mathbb{1}_{[0,x]}(y)$ which belongs to $L^2([0,1])$
 $-$ and we finally have $K_x(0) = K_x(1) = 0.$

Please note that the function K_x has been built such that $\mathcal{P}(K_x) : y \mapsto \int_0^y K_x(t) dt$ is a solution of the equation g''(y) - g(y) = 1 on [0, x] with the conditions g(0) = 0 and g(x) = 0 (*). Then for all $x \in [0, 1]$ and for all $f \in \mathcal{H}$,

$$< f, K_x >_{\mathcal{H}} = \int_0^1 K_x(u) f(u) + f'(u) K'_x(u) du$$

$$= \int_0^1 K_x(u) f(u) du + \int_0^1 f'(u) K'_x(u) du, \text{ and using an IPP in the first integrale we get}$$

$$= \underbrace{\left[\int_0^u K_x(t) dt f(u)\right]_0^1}_{=0 \text{ since } f(0) = f(1) = 0} - \int_0^x f'(u) \int_0^u K_x(t) dt du + \int_0^x f'(u) \underbrace{K'_x(u)}_{=\mathcal{P}(K_x)''(u)} du$$

$$= \int_0^x f'(u) \underbrace{\left(\mathcal{P}(K_x)''(u) - \mathcal{P}(K_x)(u)\right)}_{=1 \text{ using } (*)} du$$

$$= f(x) - \underbrace{f(0)}_{=0 \text{ since } f \in \mathcal{H}}$$

$$= f(x)$$

So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS \mathcal{H} .

Exercise 4: Duality

1. We are considering the following optimization problem

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) \text{ such that } ||f||_{\mathcal{H}_K} \le B.$$

which is equivalent to

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) \text{ such that } ||f||_{\mathcal{H}_K}^2 \le B^2.$$
(3)

Dualizing the constraint involved in (3), we get that the problem (3) is equivalent to :

$$\min_{f \in \mathcal{H}_K} \sup_{\lambda \ge 0} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) + \lambda(||f||^2_{\mathcal{H}_K} - B^2).$$
(4)

Since the function l_y is convex for all $y \in \{-1, +1\}$, we deduce that the optimization problem (4) is a convex optimization problem and qualification holds (since there is no constraint). Thus, **strong duality holds**. Thus, the problem (4) is equivalent to

$$\sup_{\lambda \ge 0} \min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) + \lambda(||f||^2_{\mathcal{H}_K} - B^2).$$

The KKT conditions give us that there exists $\lambda^* \geq 0$ such that (4) is equivalent to

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) + \lambda^*(||f||^2_{\mathcal{H}_K} - B^2) = \min_{f \in \mathcal{H}_K} \frac{1}{n} \Psi(f(x_1), \dots, f(x_n), ||f||^2_{\mathcal{H}_K}),$$
(5)

where $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ is a function of n+1 variables, strictly increasing with respect to the last variable. Since K is the reproducing kernel of the RKHS \mathcal{H}_K , we have thanks to the **representer theorem** that a solution f of the optimization problem (5) can be written of the form :

$$f(x) = \sum_{i=1}^{n} \alpha_i K_{x_i}(x), \quad (\alpha_i)_{i=1}^n \in \mathbb{R}^n.$$

Denoting **K** the matrix of size $n \times n$: $(K(x_i, x_j))_{1 \le i,j \le n}$, we have that :

- $\forall i \in \llbracket 1, n \rrbracket, f(x_i) = (\mathbf{K}\alpha)_i$ where α denote the vector $(\alpha_i)_{i=1}^n$.
- $||f||_{\mathcal{H}_K}^2 = \alpha^T \mathbf{K} \alpha.$

The optimization problem (5) is hence equivalent to

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n l_{y_i}((\mathbf{K}\alpha)_i) + \lambda^* (\alpha^T \mathbf{K}\alpha - B^2) = \min_{\alpha \in \mathbb{R}^n} R(\mathbf{K}\alpha) + \lambda^* (\alpha^T \mathbf{K}\alpha - B^2),$$
(6)

where $R(z) = \frac{1}{n} \sum_{i=1}^{n} l_{y_i}(z_i), \quad \forall z \in \mathbb{R}^n.$

2. We compute the Fenchel-Legendre transform of R. Let $z \in \mathbb{R}^n$,

$$\begin{split} R^*(z) &= \sup_{x \in \mathbb{R}^n} \langle x, z \rangle - R(x) \\ &= \sup_{x \in \mathbb{R}^n} \langle x, z \rangle - \frac{1}{n} \sum_{i=1}^n l_{y_i}(x_i), \text{ here we remark that the problem is separable} \\ &= \sum_{i=1}^n \left(\sup_{x_i \in \mathbb{R}} \left[x_i z_i - \frac{1}{n} l_{y_i}(x_i) \right] \right) \\ &= \sum_{i=1}^n \frac{1}{n} l_{y_i}^*(nz_i). \end{split}$$

3. We add the slack variable $u = \mathbf{K}\alpha$ in the optimization problem (6). The problem (3) can thus be written as :

$$\min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda^* (\alpha^T \mathbf{K} \alpha - B^2) \text{ such that } u = \mathbf{K} \alpha.$$
(7)

The dual of the problem (7) is :

$$\sup_{\mu \in \mathbb{R}^n} \quad \min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda^* (\alpha^T \mathbf{K} \alpha - B^2) + \mu^T (\mathbf{K} \alpha - u)$$

which is equivalent to

$$\sup_{\mu \in \mathbb{R}^n} \left(\min_{\alpha \in \mathbb{R}^n} \left[\lambda^* (\alpha^T \mathbf{K} \alpha - B^2) + \mu^T \mathbf{K} \alpha \right] + \min_{u \in \mathbb{R}^n} \left[R(u) - \mu^T u \right] \right)$$

• Since the minimization problem in α is an unconstrained convex optimization problem, an optimal solution is given by setting the gradient to zero which leads to $2\lambda^* \mathbf{K} \alpha = \mathbf{K} \mu$. Thus, all the optimal solution have the form $\alpha = \frac{\mu}{2\lambda^*} + \epsilon$ with $\epsilon \in Ker(\mathbf{K})$, but all those solutions lead to the same function f since $\mathbf{K}(\frac{\mu}{2\lambda^*} + \epsilon) = \mathbf{K}\frac{\mu}{2\lambda^*}$.

•
$$\min_{u \in \mathbb{R}^n} \left[R(u) - \mu^T u \right] = -\sup_{u \in \mathbb{R}^n} \left[\mu^T u - R(u) \right] = -R^*(\mu)$$

We deduce that the above optimization problem is equivalent to

$$\sup_{\mu \in \mathbb{R}^n} \frac{1}{4\lambda^*} \mu^T \mathbf{K} \mu + \frac{1}{2\lambda^*} \mu^T \mathbf{K} \mu - R^*(\mu) - \lambda^* B^2 = \sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - R^*(\mu) - \lambda^* B^2.$$

A solution (α, u) from (7) can be easily computed from an optimal solution μ of this dual problem with : $\alpha = \frac{\mu}{2\lambda^*}$ and $u = \mathbf{K}\alpha = \frac{1}{2\lambda^*}\mathbf{K}\mu$. We could have a large choice for α (adding any element of $Ker(\mathbf{K})$) but all of them will lead to the same solution of the original problem defined by : $f(.) = \sum_{i=1}^{n} \alpha_i K(x_i, .)$.

- 4. We are now going to the use the previous work to derive the dual problem of the logistic and the squared hinge losses.
 - Logistic loss

We consider the losses $l_y(u) = \ln(1 + e^{-uy})$ for $y \in \{-1, +1\}$. For a given $y \in \{-1, +1\}$, we compute the Fenchel-Legendre transform of l_y :

$$\forall v \in \mathbb{R}, \ l_y^*(v) = \sup_{u \in \mathbb{R}} uv - \ln(1 + e^{-uy})$$

First, we remark that

$$l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ +\infty & \text{if } (v < -1 \text{ and } y = 1) \text{ or } (v > 1 \text{ and } y = -1) \\ 0 & \text{if } v = 0 \text{ or } (v = -1 \text{ and } y = 1) \text{ or } (v = 1 \text{ and } y = -1) \end{cases}$$

The justifications are given at the end of this document.

We consider now that we are in one of the two remaining cases: (-1 < v < 0 and y = 1) or (0 < v < 1 and y = -1).

The function $u \mapsto uv - \ln(1 + e^{-uy})$ is a concave function. We solve the supremum problem by setting the gradient of this function to 0:

$$v + \frac{ye^{-uy}}{1 + e^{-uy}} = 0 \Leftrightarrow e^{-uy}(v + y) = -v \Leftrightarrow u = \frac{-1}{y} \ln\left(\frac{-v}{v + y}\right) = -y \ln\left(\frac{-v}{v + y}\right).$$

Hence, in those cases, we have $l_y^*(v) = -yv \ln\left(\frac{-v}{v+y}\right) - \ln(1-\frac{v}{v+y}) = -yv \ln\left(\frac{-v}{v+y}\right) - \ln(\frac{y}{v+y})$. Thus, the dual problem takes the following form with the logistic losses :

$$\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n l_{y_i}^*(n\mu_i) - \lambda^* B^2$$

i.e.

$$\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n \left(-y_i n \mu_i \ln\left(\frac{-n\mu_i}{n\mu_i + y_i}\right) - \ln\left(\frac{y_i}{n\mu_i + y_i}\right) \right) - \lambda^* B^2$$

s.t. $-1 < ny_i \mu_i < 0, \ \forall i \in [\![1,n]\!]$

• Squared hinge loss

We consider the losses $l_y(u) = \max(0, 1 - yu)^2$ for $y \in \{-1, +1\}$. For a given $y \in \{-1, +1\}$, we compute the Fenchel-Legendre transform of l_y :

$$\forall v \in \mathbb{R}, \ l_y^*(v) = \sup_{u \in \mathbb{R}} uv - \max(0, 1 - yu)^2$$

We have :

$$l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ -1 + \frac{(2y+v)^2}{4} & \text{otherwise} \end{cases}$$

Thus, the dual problem takes the following form with the squared hinge losses :

$$\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n l_{y_i}^*(n\mu_i) - \lambda^* B^2$$

i.e.

$$\sup_{\boldsymbol{\mu}\in\mathbb{R}^n} \frac{3}{4\lambda^*} \boldsymbol{\mu}^T \mathbf{K} \boldsymbol{\mu} - \frac{1}{n} \sum_{i=1}^n \left(-1 + \frac{(2y_i + n\mu_i)^2}{4} \right) - \lambda^* B^2$$

s.t. $y_i \mu_i \le 0, \ \forall i \in [\![1,n]\!]$

i.e.

$$\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - y^T \mu - \frac{n}{4} \mu^T \mu - \lambda^* B^2$$

s.t. $y_i \mu_i \leq 0, \ \forall i \in [\![1, n]\!]$

Justification of the Fenchel-Legendre transforms for the Exercise 4

Logistic Loss

$$l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ +\infty & \text{if } (v < -1 \text{ and } y = 1) \text{ or } (v > 1 \text{ and } y = -1) \\ 0 & \text{if } v = 0 \text{ or } (v = -1 \text{ and } y = 1) \text{ or } (v = 1 \text{ and } y = -1) \end{cases}$$

We justify those points :

- If v > 0 and y = 1, $\lim_{u \to +\infty} uv \ln(1 + e^{-uy}) = \lim_{u \to +\infty} uv \ln(1 + e^{-u}) = +\infty$.
- If v < 0 and y = -1, $\lim_{u \to -\infty} uv \ln(1 + e^{-uy}) = \lim_{u \to -\infty} uv \ln(1 + e^u) = +\infty$
- If v < -1 and y = 1, $uv \ln(1 + e^{-uy}) = uv \ln(1 + e^{-u}) = uv + u \ln(e^u + 1) \underset{u \to -\infty}{\sim} u(v + 1)$. Since v < -1, $\lim_{u \to -\infty} uv - \ln(1 + e^{-uy}) = +\infty.$
- If v > 1 and y = -1, $uv \ln(1 + e^{-uy}) = uv \ln(1 + e^u) = uv u \ln(e^{-u} + 1) \underset{u \to +\infty}{\sim} u(v 1)$. Since v > 1, $\lim_{u \to +\infty} uv - \ln(1 + e^{-uy}) = +\infty.$
- If v = -1 and y = 1, $uv \ln(1 + e^{-uy}) = -u \ln(1 + e^{-u})$ which is always non positive and which takes the value 0 for u = 0.
- If v = 1 and y = -1, $uv \ln(1 + e^{-uy}) = u \ln(1 + e^u) = -\ln(1 + e^{-u})$ which is always non positive and which takes the value 0 for u = 0.

Squared Hinge Loss

$$l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ -1 + \frac{(2y+v)^2}{4} & \text{otherwise} \end{cases}$$

Indeed :

- If v > 0 and y = 1, $\lim_{u \to +\infty} uv \max(0, 1 yu)^2 = \lim_{u \to +\infty} uv \max(0, 1 u)^2 = +\infty$.
- If v < 0 and y = -1, $\lim_{u \to -\infty} uv \max(0, 1 yu)^2 = \lim_{u \to -\infty} uv \max(0, 1 + u)^2 = +\infty$.

- The function $u \mapsto uv (1 yu)^2 = -1 u^2 + u(v + 2y)$ (since $y^2 = 1$) reaches its maximum at $u^* = \frac{2y+v}{2}$. Let's prove that u^* is such that $1 yu^* \ge 0$ in the cases ($v \le 0$ and y = 1) and ($v \ge 0$ and y = -1). We will then deduce directly that $l_y^*(v) = u^*v (1 yu^*)^2$ in those cases.
 - If $(v \leq 0 \text{ and } y = 1)$,

$$1 - yu^* \ge 0 \Leftrightarrow 1 \ge u^* \Leftrightarrow 1 \ge \frac{2 + v}{2} \Leftrightarrow v \le 0$$

- If $(v \ge 0 \text{ and } y = -1)$,

$$1 - yu^* \ge 0 \Leftrightarrow -1 \le u^* \Leftrightarrow -1 \le \frac{-2 + v}{2} \Leftrightarrow v \ge 0$$

Hence, $l_y^*(v) = u^*v - (1 - yu^*)^2 = -1 + \frac{(2y+v)^2}{4}$.