Homework Kernel Methods

Quentin Duchemin

February 2019

Exercise 1

We recall some useful results for the exercise :

Theorem 1. Let X be a set. If $(P_i)_{i>0}$ is a sequence of p.d. kernels that converges pointwisely to a function P, then P is a p.d. kernel.

Theorem 2. Let X be a set. If $P_1: X \to \mathbb{R}$ and $P_2: X \to \mathbb{R}$ are p.d. kernels, then $P_1 + P_2$ is a p.d. kernel. A trivial induction gives us that for any finite family of p.d. kernels $(P_i)_{i \in [\![1,n]\!]}$ $(n \in \mathbb{N})$, $\sum_{i=1}^n P_i$ is a p.d. kernel.

Theorem 3. Let X be a set.

If $P: \mathcal{X} \to \mathbb{R}$ is a p.d. kernel, then P^2 (understood as the Hadamard product) is a p.d. kernel. A trivial induction gives us that P^k is a p.d. kernel for all $k \in \mathbb{N}$.

1. • The kernel

$$
K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}
$$

$$
(x, y) \mapsto \cos(x - y)
$$

is clearly symmetric since the function cosinus is an even function.

• Let $N \in \mathbb{N}$, $(\alpha_i)_{i=1}^N \in \mathbb{R}^N$ and $(x_i)_{i=1}^N \in \mathbb{R}^N$.

We recall the usual identity for the cosinus of a difference : $\forall (a, b) \in \mathbb{R}^2$, $\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ which leads to :

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j K(x_i, x_j) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \cos(x_i - x_j)
$$

=
$$
\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (\cos(x_i) \cos(x_j) + \sin(x_i) \sin(x_j))
$$

=
$$
\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \cos(x_i) \cos(x_j) + \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \sin(x_i) \sin(x_j)
$$

=
$$
\left(\sum_{i=1}^{N} \alpha_i \cos(x_i)\right)^2 + \left(\sum_{i=1}^{N} \alpha_i \sin(x_i)\right)^2
$$

$$
\geq 0
$$

Hence, the kernel K is positive definite.

2. • Let $\mathcal{X} = \{x \in \mathbb{R}^p : ||x||_2 < 1\}$. The kernel

$$
K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}
$$

$$
(x, y) \mapsto \frac{1}{1 - x^T y}
$$

is symmetric since $\forall (x, y) \in \mathcal{X}^2$, $x^T y = y^T x$.

• We denote by \overline{K} the linear kernel on \mathcal{X} , i.e.

$$
\overline{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}
$$

$$
(x, y) \mapsto x^T y
$$

We remark that $\forall (x, y) \in \mathcal{X}^2$, the Cauchy-Schwarz inequality gives us $|x^T y| = | \langle x | y \rangle_{\mathbb{R}^p} | \le ||x||_2 ||y||_2 \langle 1$ by definition of the set $\mathcal X$. This fact allows us to express the kernel K using the Taylor series expansion of the function $f(x) = \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \forall x \in]-1,1[$.

Thus $K(x, y) = \lim_{n \to +\infty} \sum_{k=0}^{n} (\overline{K}(x, y))^{k}$.

- We know from the course that the Hadamard product of two p.d. kernels is a p.d. kernel. By induction, we get that for all $k \in \mathbb{N}$, the kernel $(x, y) \mapsto \overline{K}(x, y)^k$ is a p.d. kernel $(*)$ (since the linear kernel is a p.d. kernel). This is the theorem (3).
- We know form the course that the sum of two p.d. kernels is a p.d. kernel. Thus, by induction, for all $n \in \mathbb{N}$, $\sum_{k=0}^{n} (\overline{K}(x, y))^k$ is a p.d. kernel using (*).
- Using the theorem 1, $K(x, y) = \lim_{n \to +\infty} \sum_{k=0}^{n} (\overline{K}(x, y))^k$ is a p.d. kernel using the previous item.

Hence, the kernel K is positive definite.

3. • Let $(Ω, A, P)$ a probability space. The kernel

$$
K: \mathcal{A} \times \mathcal{A} \to \mathbb{R}
$$

$$
(A, B) \mapsto P(A \cap B) - P(A)P(B)
$$

is clearly symmetric.

• We remark that for all $(A, B) \in \mathcal{A}^2$,

$$
P(A \cap B) - P(A)P(B) = \mathbb{E}[\mathbb{1}_{A \cap B}] - \mathbb{E}[\mathbb{1}_A]\mathbb{E}[\mathbb{1}_B]
$$

= $\mathbb{E}[\mathbb{1}_A \mathbb{1}_B] - \mathbb{E}[\mathbb{1}_A]\mathbb{E}[\mathbb{1}_B]$
= $Cov[\mathbb{1}_A, \mathbb{1}_B] \quad (*)$

Let $N \in \mathbb{N}$, $(\alpha_i)_{i=1}^N \in \mathbb{R}^N$ and $(A_i)_{i=1}^N \in \mathcal{A}^N$. Using $(*)$ and the bilinearity of the Covariance, we have :

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j K(A_i, A_j) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j Cov[\mathbb{1}_{A_i}, \mathbb{1}_{A_j}]
$$

$$
= Cov\left[\sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}, \sum_{j=1}^{N} \alpha_j \mathbb{1}_{A_j}\right]
$$

$$
= Var\left[\sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}\right]
$$

$$
\geq 0
$$

Hence, the kernel K is positive definite.

4. • Let X be a set and $f, g: \mathcal{X} \to \mathbb{R}_+$ two non-negative functions. The kernel

$$
K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}
$$

$$
(x, y) \mapsto \min\{f(x)g(y), f(y)g(x)\}\
$$

is clearly symmetric.

• We adopt the convention that for all $a \in \mathbb{R}$, $\frac{a}{a}$ $\frac{\infty}{0} = 0$. This convention allows us to have for all $(x, y) \in \mathcal{X}$,

$$
K(x,y) = \min\{f(x)g(y), f(y)g(x)\} = \frac{1}{g(x)g(y)}\min\{\frac{f(x)}{g(x)}, \frac{f(y)}{g(y)}\}.
$$

We have used the fact that f and g are non negative. Moreover, the convention adopted makes this equality holds even when $g(x) = 0$ or $g(y) = 0$.

Using this reformulation we have :

$$
K(x, y) = \min\{f(x)g(y), f(y)g(x)\}\
$$

=
$$
\frac{1}{g(x)g(y)} \min\left\{\frac{f(x)}{g(x)}, \frac{f(y)}{g(y)}\right\}
$$

=
$$
\frac{1}{g(x)g(y)} \int_0^{+\infty} 1_{\{t \le \frac{f(x)}{g(x)}\}} 1_{\{t \le \frac{f(y)}{g(y)}\}} dt
$$

=
$$
< t \mapsto \frac{1}{g(x)} 1_{\{t \le \frac{f(x)}{g(x)}\}} | t \mapsto \frac{1}{g(y)} 1_{\{t \le \frac{f(y)}{g(y)}\}} > (*)
$$

where $\langle .|. \rangle$ denotes the usual scalar product on $L^2(\mathbb{R}_+).$ Let $N \in \mathbb{N}$, $(\alpha_i)_{i=1}^N \in \mathbb{R}^N$ and $(x_i)_{i=1}^N \in \mathcal{X}^N$.

Using $(*)$ and the bilinearity of the scalar product, we have :

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j K(x_i, x_j) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j < t \mapsto \frac{1}{g(x_i)} \mathbb{1}_{\{t \le \frac{f(x_i)}{g(x_i)}\}} \mid t \mapsto \frac{1}{g(x_j)} \mathbb{1}_{\{t \le \frac{f(x_j)}{g(x_j)}\}} > \n= < t \mapsto \sum_{i=1}^{N} \alpha_i \frac{1}{g(x_i)} \mathbb{1}_{\{t \le \frac{f(x_i)}{g(x_i)}\}} \left| \sum_{j=1}^{N} \alpha_j t \mapsto \frac{1}{g(x_j)} \mathbb{1}_{\{t \le \frac{f(x_j)}{g(x_j)}\}} > \n= \left| \left| t \mapsto \sum_{i=1}^{N} \alpha_i \frac{1}{g(x_i)} \mathbb{1}_{\{t \le \frac{f(x_i)}{g(x_i)}\}} \right| \right|_{L^2}^2
$$
\n
$$
\ge 0
$$

Hence, the kernel K is positive definite.

5. We consider a non-empty finite set E and we define $\forall A, B \subset E$, $K(A, B) = \frac{A \cap B}{A \cup B}$ with the convention $\frac{0}{0} = 0$. We note $n = |E|$.

We start by doing to useful remarks for what follows.

- Remark 1: We know that $\forall x \in [0,1], \sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$ as the sum of a geometric sequence.
- Remark 2: If we consider $A, B \subset E$ with A or/and B different from \emptyset , $n = |E| > |A^c \cap B^c|$ (where $A^c = E \setminus A$). With the first remark we are allowed to write in this case :

$$
\sum_{k=0}^{+\infty} \left(\frac{|A^c \cap B^c|}{n} \right)^k = \frac{1}{1 - \frac{|A^c \cap B^c|}{n}} \quad (*)
$$

Please note that if A or B is the empty set, then $K(A, B) = 0$. Thus, without loss of generality, we will suppose from now that the subsets of E considered are non empty. Thus, we have :

$$
K(A, B) = \frac{|A \cap B|}{|A \cup B|}
$$

=
$$
\frac{|A \cap B|}{n - |A^c \cap B^c|}
$$
, since $(A \cup B)^c = A^c \cap B^c$.
=
$$
\frac{|A \cap B|}{n} \times \frac{1}{1 - \frac{|A^c \cap B^c|}{n}}
$$

=
$$
\frac{|A \cap B|}{n} \times \sum_{k=0}^{+\infty} \left(\frac{|A^c \cap B^c|}{n}\right)^k
$$

We define the functions :

$$
K_1: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathbb{R}
$$

$$
(C, D) \mapsto \frac{|C \cap D|}{n}
$$

and

$$
K_2: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathbb{R}
$$

$$
(C, D) \mapsto \frac{|C^c \cap D^c|}{n}
$$

 K_1 and K_2 are two positive definite kernels. In order to justify this claim, we endow $(E, \mathcal{P}(E))$ with the uniform probability distribution denoted **P**. Then, for all $(C, D) \in \mathcal{P}(E)^2$,

$$
K_1(C,D) = \frac{|C \cap D|}{n} = \mathbb{E} [\mathbb{1}_C \mathbb{1}_D] = \langle \mathbb{1}_C | \mathbb{1}_D \rangle \quad (*)
$$

where $\langle . \rangle$. $>$ denotes the usual scalar product for L^2 random variables.

Thanks to the Aronszajn's theorem, we deduce from $(*)$ that K_1 is a positive definite kernel.

The same argument also holds for K_2 since $K_2(C, D) = \langle \mathbb{1}_{C^c} | \mathbb{1}_{D^c} \rangle$. Thus, K_2 is also a positive definite kernel.

We can now prove that K is a positive definite kernel. Indeed :

- Using the theorem (3) and since K_2 is a p.d. kernel, we have that for all $k \in \mathbb{N}$, K_2^k is a p.d. kernel.
- Then, using the previous item and the theorem (2), we get the for all $N \in \mathbb{N}$, $\sum_{k=1}^{N} K_2^k$ is a p.d. kernel.
- Using the previous item, the theorem (1) and the equality (∗), we know that the kernel

$$
K_3 := \sum_{k=0}^{+\infty} K_2^k : (A, B) \mapsto \sum_{k=0}^{+\infty} \left(\frac{|A^c \cap B^c|}{n} \right)^k = \frac{1}{1 - \frac{|A^c \cap B^c|}{n}} \text{ is a p.d. kernel.}
$$

• Finally, since K_1 and K_3 are p.d. kernels and since $K = K_1 K_3$ (hadamard product), we have using the theorem (3) that K is p.d. kernel.

Hence, K is a positive definite kernel.

Exercise 2

1. K_1 and K_2 are two positive kernels and α, β are two positive scalars. We deduce that αK_1 and βK_2 are two positive kernels (as the multiplication by a positive scalar of a positive kernel). Then, we have that $\alpha K_1 + \beta K_2$ is a positive kernel as the sum of two positive kernels (using theorem (2)).

We denote \mathcal{H}_1 (resp. \mathcal{H}_2) the RKHS associated with the p.d. kernel K_1 (resp. K_2). We note $\langle .|. \rangle_1$ (resp. $\langle .|. \rangle_2$) the scalar product associated with \mathcal{H}_1 (resp. \mathcal{H}_2).

• First we look at the topology of $H_1 + H_2$. We denote $E = H_1 \times H_2$. This set is a Hilbert space if we equip it with the norm $||.||_E : (f_1, f_2) \mapsto \sqrt{\frac{1}{\alpha}||f_1||_1^2 + \frac{1}{\beta}||f_2||_2^2},$

We want to compare the topologies of $H_1 + H_2$ and E. A direct link between these spaces is the natural surjection

$$
s: E \to \mathcal{H}_1 + \mathcal{H}_2
$$

$$
(f_1, f_2) \mapsto f_1 + f_2
$$

We are going to try to make s injective. In order to do so, let's consider $N = s^{-1}(\{0\})$. We will begin by proving that N is a closed subset of E :

Let $(f_n, -f_n)$ be a sequence of elements of N converging in E to (f, g) . By definition of the norm $||.||_E$, $(f_n)_{n\geq 1}$ converges in \mathcal{H}_1 to f and $(-f_n)_{n\geq 1}$ converges in \mathcal{H}_2 to g. Since convergence in a RKHS implies ponctual convergence, we will have $f = -g$ an therefore $(f, g) \in N$. N is therefore a closed subset of E.

Since N is closed, E is equal to the direct sum of N and its orthogonal complement N^{\perp} . The restriction \tilde{s} of s to N^{\perp} will therefore be a bijection.

Now that we have a linear bijection, we can equip $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ with an Hilbertian structure inherited from E. With the norm $||.||_{\mathcal{H}} : f \mapsto ||\tilde{s}^{-1}(f)||_E$, $\mathcal{H}_1 + \mathcal{H}_2$ is indeed a Hilbert space.

- It is obvious that for all $x \in \mathcal{X}$, $K_x = K(x,.) = \alpha K_1(x,.) + \beta K_2(x,.)$ belongs to $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ (since $K_1(x,.) \in \mathcal{H}_1$ and $K_2(x,.) \in \mathcal{H}_2$ by the definition of the reproducing kernel of a RKHS).
- In fact, to prove that $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ endowed with the norm we just defined is the RKHS of $\alpha K_1 + \beta K_2$, we still need to prove the reproducing property: let $x \in \mathcal{X}$ and $f \in \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$. We can write $f = \tilde{s}(f_1, f_2)$ and $K_x = \tilde{s}(A_x, B_x)$ where (f_1, f_2) and (A_x, B_x) live in N^{\perp} . Thus,

$$
_{\mathcal{H}_1+\mathcal{H}_2}=<(f_1,f_2),(A_x,B_x)>_E=<(f_1,f_2),(\alpha K_{1x},\beta K_{2x})+(A_x-\alpha K_{1x},B_x-\beta K_{2x})>_E
$$

but, since $s(A_x - \alpha K_{1x}, B_x - \beta K_{2x}) = A_x - \alpha K_{1x} + B_x - \beta K_{2x} = K_x - K_x = 0$, we have that the vector $(A_x - \alpha K_{1x}, B_x - \beta K_{2x})$ belongs to N. Therefore, it is orthogonal to every element in N^{\perp} , and in particular to (f_1, f_2) . Consequently, $\langle f, K_x \rangle_{\mathcal{H}} = \langle (f_1, f_2), (\alpha K_1(x, .), \beta K_2(x, .)) \rangle_{E} = f_1(x) + f_2(x) = f(x)$ and the reproducing property is true.

 $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ is therefore the RKHS of $\alpha K_1 + \beta K_2$.

2. We consider $\psi : \mathcal{X} \to \mathcal{F}$ where \mathcal{F} is a Hilbert space. The kernel

$$
K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}
$$

$$
(x, x') \mapsto \langle \psi(x), \psi(x') \rangle_{\mathcal{F}}
$$

is positive definite as a direct consequence of the Aronzsajn's theorem.

We are now going to show that the RKHS associated to positive definite kernel K is the image of the operator T defined by :

$$
\forall f \in \mathcal{F}, \quad Tf: \mathcal{X} \to \mathbb{R}
$$

$$
x \mapsto (Tf)(x) := \langle f, \psi(x) \rangle_{\mathcal{F}}
$$

First, we recall a result seen during the class which will be the cornerstone of the proof :

Theorem 4. Any kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ positive definite is a reproducing kernel.

Useful elements of the proof for what follows :

We define \mathcal{H}_0 the vector space spanned by the functions K_x for $x \in \mathcal{X}$. The scalar product on \mathcal{H}_0 is given by :

$$
\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i,j} a_i b_j K(x_i, x_j)
$$

where we have decomposed f and g as $f = \sum_i a_i K_{x_i}$ and $g = \sum_j b_j K_{x_j}$ (we proved in class that the definition is independent of the decomposition). Then, the RKHS \mathcal{H}_K related to the kernel K is obtained by taking the completion of H_0 to a Hilbert space.

Now, we have all the tools to prove our claim :

$$
\mathcal{H}_K = Im(T) = \{ Tf \, , \, f \in \mathcal{F} \}.
$$

• $\mathcal{H}_0 \subset \text{Im}(\mathbf{T}).$

Indeed, let $x \in \mathcal{X}$. For all $y \in \mathcal{X}$, $K_x(y) = \langle \psi(x), \psi(y) \rangle_{\mathcal{F}} = (T\psi(x))(y)$. So $Im(T)$ contains all the functions K_x for $x \in \mathcal{X}$. Since $Im(T)$ is a linear space, then linear span of $\{K_x, x \in \mathcal{X}\}\)$, that is \mathcal{H}_0 , will be in $Im(T)$.

• T : Span $(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric. Since for all $x \in \mathcal{X}$, $T\psi(x) = K_x$, we have $T\left(\sum_x \alpha_x \psi(x)\right) = \sum_x \alpha_x K_x$. Hence,

$$
\langle T\left(\sum_{x} \alpha_{x} \psi(x)\right), T\left(\sum_{y} \beta_{y} \psi(y)\right) >_{\mathcal{H}_{0}} = \langle \sum_{x} \alpha_{x} K_{x}, \sum_{y} \beta_{y} K_{y} >_{\mathcal{H}_{0}} \n= \sum_{x,y} \alpha_{x} \beta_{y} K(x,y) \text{ using the construction of } \langle \cdot, \cdot \rangle_{\mathcal{H}_{0}} \text{ recalled in theorem 4} \n= \sum_{x,y} \alpha_{x} \beta_{y} \langle \psi(x), \psi(y) \rangle_{\mathcal{F}} \n= \langle \sum_{x} \alpha_{x} \psi(x), \sum_{y} \beta_{y} \psi(y) \rangle_{\mathcal{F}}.
$$

This proves that $T: Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric.

Clearly,
$$
T\left(Span(\psi(x), x \in \mathcal{X})\right) = \mathcal{H}_0
$$
.
\n• $\mathcal{F} = \ker(T) \bigoplus \ker(T)^{\perp}$ with $\ker(T)^{\perp} = \overline{Span(\psi(x), x \in \mathcal{X})}$.
\n- Let $f \in \ker(T)$.
\nSo, $Tf = 0$ ie $(Tf)(x) = \langle f, \psi(x) \rangle_{\mathcal{F}} = 0 \forall x \in \mathcal{X}$. Since T is linear, this means that $f \perp Span(\psi(x), x \in \mathcal{X})$, i.e.

$$
\ker(T) \subset Span(\psi(x), \ x \in \mathcal{X})^{\perp}.
$$

 $-\text{ Let } f \in Span(\psi(x), x \in \mathcal{X})^{\perp} = \{\psi(x), x \in \mathcal{X}\}^{\perp}.$ Then, for all $x, 0 = \langle f, \psi(x) \rangle_{\mathcal{F}} = (Tf)(x) \implies Tf = 0$ i.e. $f \in \text{ker}(T)$. Hence:

$$
Span(\psi(x), x \in \mathcal{X})^{\perp} \subset \ker(T).
$$

This proves that :

$$
\ker(\mathbf{T}) = \mathbf{Span}(\psi(\mathbf{x}), \ \mathbf{x} \in \mathcal{X})^{\perp}.
$$

– By the previous item,

$$
\ker(T)^{\perp} = \left(Span(\psi(x), x \in \mathcal{X})^{\perp}\right)^{\perp} = \overline{Span(\psi(x), x \in \mathcal{X})}
$$

This shows in particular that $\ker(T)^{\perp}$ is closed. We are able to write

$$
\mathcal{F} = \ker(T) \bigoplus \ker(T)^{\perp}.
$$

• Since $T: Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric and surjective, and since \mathcal{H}_0 is dense in \mathcal{H}_K (by construction: see theorem (4)), it follows that $T: Span(\psi(x), x \in \mathcal{X}) \to \overline{\mathcal{H}_0} = \mathcal{H}_K$ is surjective $((*)$, see below for further

 $=\ker(T)^{\perp}$

justification). Hence, we have :

$$
\mathcal{H}_K = T(\ker(T)^{\perp}) = T(\ker(T) \bigoplus \ker(T)^{\perp}) = T(\mathcal{F}) = Im(T).
$$

Comments

This result of the question 2 allows us to have another point of view on a RKHS. Indeed, we have shown that for a kernel K defined by a feature map ψ , the RKHS related to K is :

$$
\mathcal{H}_K = Im(T) = \{ x \mapsto f, \psi(x) >_{\mathcal{F}} \text{ such that } f \in \mathcal{F} \}.
$$

This representation implies that the elements of the RKHS are inner products of elements in the feature space and can accordingly be seen as hyperplanes.

Further justification for $(*).$

 $T : Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is isometric, and linear. We can thus apply the theorem to extend linear function uniformly continuous (here, T is uniformly continuous because isometric). So, we can extend T as a linear isometry on $Span(\psi(x), x \in \mathcal{X})$. We still call this new function T. The miracle is that this function T is in fact surjective in H_K .

Indeed, let $g \in \mathcal{H}_K$. Since \mathcal{H}_0 is dense in \mathcal{H}_K , there exists a sequence $(g_n)_n$ in \mathcal{H}_0 such that $||g_n - g||_{\mathcal{H}_0} \to 0$. Since $T : Span(\psi(x), x \in \mathcal{X}) \to \mathcal{H}_0$ is surjective, for all $n \in \mathbb{N}$, there exists $f_n \in \mathcal{F}$ such that $Tf_n = g_n$. Since $(g_n)_n$ is convergent, it is in particular a Cauchy sequence and the fact that T is isometric gives us that for all $n, m \in \mathbb{N}$,

$$
||g_m - g_n||_{\mathcal{H}_0} = ||Tf_m - Tf_n||_{\mathcal{H}_0} = ||T(f_m - f_n)||_{\mathcal{H}_0} = ||f_m - f_n||_{\mathcal{F}}.
$$

Hence, $(f_n)_n$ is a Cauchy sequence in the Hilbert space F. Hence, it converges to some $f \in \mathcal{F}$. But, since $(f_n)_n \in Span(\psi(x), x \in \mathcal{X})^{\mathbb{N}},$ we have that $f \in \overline{Span(\psi(x), x \in \mathcal{X})}$. Hence, $g \in \mathcal{H}_K$ admits the preimage f by T which belongs to $\overline{Span(\psi(x), x \in \mathcal{X})}$.

Exercise 3

1. We recall a theorem studied in class :

Theorem 5. The Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ is a RKHS if and only if for any $x \in \mathcal{X}$, the mapping

$$
F_x: \mathcal{H} \to \mathbb{R}
$$

$$
f \mapsto f(x)
$$

is continuous.

In our case, $\mathcal{H} = \{f : [0,1] \to \mathbb{R} \text{ absolutely continuous}, f' \in L^2([0,1]), f(0) = 0\}$ endowed with the bilinear form : $\forall f, g \in \mathcal{H}, \quad _{\mathcal{H}} = \int_0^1 f'(u)g'(u)du.$

- H is a prehilbert space of functions
	- H is a vector space of functions and $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is a bilinear form that satisfies $\langle f, f \rangle_{\mathcal{H}} \geq 0$.
	- f absolutely continuous on [0, 1] implies differentiable almost everywhere and $∀x ∈ [0, 1],$ $f(x) = f(0) +$ $\int_0^x f'(u)du$. Hence:

$$
\forall f \in \mathcal{H}, \ \forall x \in [0, 1], \quad |f(x)| = |f(x) - \underbrace{f(0)}_{=0 \text{ since } f \in \mathcal{H}}| = |\int_0^x f'(u) du| \le \int_0^x \underbrace{|f'(u)|}_{\ge 0} du \le \int_0^1 |f'(u)| du
$$

$$
= \int_0^1 \sqrt{|f'(u)|^2} du \le \sqrt{\int_0^1 |f'(u)|^2} du = \langle f, f \rangle \frac{1}{\mathcal{H}} \tag{1}
$$

where the last inequality is obtained by using the Jensen inequality with the concave function $t \mapsto$ t. Therefore $\langle f, f \rangle_{\mathcal{H}}=0 \implies f=0$, showing that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner product. Thus, H is a preHilbert space.

• H is a Hilbert space

Let $(f_n)_{n\in\mathbb{N}}$ a Cauchy sequence of H. Then, $(f'_n)_{n\in\mathbb{N}}$ is a Cauchy sequence of $L^2([0,1])$ (by definition of the norm on H), and thus convergences to some $g \in L^2([0,1])$ for the norm $||.||_{L^2}$ (by completeness).

Using the inequality (1), for all $x \in [0,1]$, $(f_n(x))_{n\in\mathbb{N}}$ is a Cauchy sequence of $\mathbb R$ which is complete and thus converges to some $f(x)$. Moreover,

$$
f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \int_0^x f'_n(u) du = \int_0^x g(u) du
$$

where we have used an interversion between limit and integral which is possible thanks to the L^2 convergence of $(f'_n)_n$ to g. This shows that f is absolutely continuous and $f' = g$ almost everywhere, in particular, $f' \in L^2([0,1]).$

Finally, $f(0) = \lim_{n \to +\infty} f_n(0) = 0$. Therefore, $f \in \mathcal{H}$ and $\lim_{n \to +\infty} ||f_n - f||_{\mathcal{H}} = ||f'_n - g||_{L^2} = 0$. We have proved then $\mathcal H$ is a Hilbert space.

• H is a RKHS

Let $x \in [0,1]$. For all $f \in \mathcal{H}$,

$$
|F_x(f)| = |f(x)| \le ||f||_{\mathcal{H}}
$$
 using (1).

Since the mapping F_x is linear, the above inequality proves that for all $x \in \mathcal{X}$, F_x is continuous. We deduce that H is a RKHS with the theorem 5.

• Reproducing kernel of H

Consider the function

$$
K : [0,1] \times [0,1] \to \mathbb{R}
$$

$$
(x,y) \mapsto \min(x,y) = \begin{cases} y & \text{if } y < x \\ x & \text{if } x \le y \end{cases}
$$

For all $x \in [0,1]$, the function $K_x : t \mapsto K(x, t)$ belongs to H because :

- it is absolutely continuous on $[0, 1]$ since :
	- \ast K_x has derivative almost everywhere (except in x)
	- ∗ K'_x is Lebsgue integrable

*
$$
\forall t \in [0,1], K_x(t) = K_x(0) + \int_0^t K'_x(u) du
$$

- * $\forall t \in [0, 1], K_x(t) = K_x(0) + \int_0^t K'_x$
- $K'_x = \mathbb{1}_{[0, x]}$ which belongs to $L^2([0, 1])$
- and we finally have $K_x(0) = 0$.

Moreover for all
$$
x \in [0, 1]
$$
 and for all $f \in \mathcal{H}$, $\langle f, K_x \rangle = \int_0^1 f'(u) K'_x(u) du = \int_0^1 f'(u) \mathbb{1}_{[0,x]} du = \int_0^x f'(u) = f(x) - \underbrace{f(0)}_{=0} = f(x)$. So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS H .

- 2. We consider now $\mathcal{H} = \{f : [0,1] \to \mathbb{R} \text{ absolutely continuous }, f' \in L^2([0,1]), f(0) = f(1) = 0\}$ endowed with the bilinear form : $\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 f'(u)g'(u)du.$
	- H is a prehilbert space of functions

H is a vector space of functions and $\langle \cdot, \cdot \rangle$ is an inner product thanks to the previous question. Thus, H is a preHilbert space.

• H is a Hilbert space

Let $(f_n)_{n\in\mathbb{N}}$ a Cauchy sequence of H. Then, $(f'_n)_{n\in\mathbb{N}}$ is a Cauchy sequence of $L^2([0,1])$ (by definition of the norm on \mathcal{H}), and thus convergences to some $g \in L^2([0,1])$.

Using the inequality (1), for all $x \in [0,1]$, $(f_n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence of **R** which is complete and thus converges to some $f(x)$. Moreover,

$$
f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \int_0^x f'_n(u) du = \int_0^x g(u) du
$$

where we have used an interversion between limit and integral which is possible thanks to the L^2 convergence of $(f'_n)_n$ to g. This shows that that f is absolutely continuous and $f' = g$ almost everywhere, in particular, $f' \in L^2([0,1]).$

Finally, $f(0) = \lim_{n \to +\infty} f_n(0) = 0$ and $f(1) = \lim_{n \to +\infty} f_n(1) = 0$. Therefore, $f \in \mathcal{H}$ and $\lim_{n \to +\infty} ||f_n - f||_{\mathcal{H}} =$ $||f'_n - g||_{L^2} = 0.$

• H is a RKHS

The computations derived in the previous question to show that the mapping F_x is continuous for all $x \in [0,1]$ still hold by definition of H (which is included in the Hilbert space studied in the previous question). Thus, using the theorem 5, we have that H is a RKHS.

• Reproducing kernel of H Consider the function

> $K : [0,1] \times [0,1] \rightarrow \mathbb{R}$ $(x, y) \mapsto \begin{cases} (1-x)y & \text{if } y < x \\ (1-x)(y-y)+(1-x)y & \text{if } y \leq y \end{cases}$ $-x(y-x)+(1-x)x$ if $x \leq y$

For all $x \in [0, 1]$, the function $K_x : t \mapsto K(x, t)$ belongs to H because :

- it is absolutely continuous on $[0, 1]$ since :
	- \ast K_x has derivative almost everywhere (except in x)
	- ∗ K'_x is Lebsgue integrable
	- * $\forall t \in [0,1], K_x(t) = K_x(0) + \int_0^t K'_x(u) du$
- $K'_x = (1-x)1_{[0,x]} x1_{[x,1]}$ which belongs to $L^2([0,1])$
- and we finally have $K_x(0) = K_x(1) = 0$.

Moreover for all
$$
x \in [0, 1]
$$
 and for all $f \in \mathcal{H}$, $\langle f, K_x >_{\mathcal{H}} = \int_0^1 f'(u) K'_x(u) du = \int_0^x f'(u)(1-x) du - \int_x^1 f'(u)x du = (1-x)(f(x) - f(0)) - x(f(1) - f(x)) = f(x)$. So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS H .

- 3. We consider now $\mathcal{H} = \{f : [0,1] \to \mathbb{R} \text{ absolutely continuous }, f' \in L^2([0,1]), f(0) = f(1) = 0\}$ endowed with the bilinear form : $\forall f, g \in \mathcal{H}, \quad \langle f, g \rangle_{\mathcal{H}} = \int_0^1 (f(u)g(u) + f'(u)g'(u))du.$
	- H is a prehilbert space of functions
		- H is a vector space of functions and $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is a bilinear form that satisfies $\langle f, f \rangle_{\mathcal{H}} \geq 0$.
		- f absolutely continuous on [0, 1] implies differentiable almost everywhere and ∀x ∈ [0, 1], $f(x) = f(0) +$ $\int_0^x f'(u)du$. Hence:

$$
\forall f \in \mathcal{H}, \quad |f(x)| = |f(x) - f(0)| = |\int_0^x f'(u) du| \le \int_0^x \underbrace{|f'(u)|}_{\geq 0} du \le \int_0^1 |f'(u)| du
$$

\n
$$
= \int_0^1 \sqrt{|f'(u)|^2} du \qquad \underbrace{\le}_{\text{since }\sqrt{\cdot} \text{ is an increasing function}} \int_0^1 \sqrt{|f'(u)|^2 + |f(u)|^2} du
$$

\n
$$
\le \sqrt{\int_0^1 |f'(u)|^2 + |f(u)|^2} du = \langle f, f \rangle \frac{1}{\mathcal{H}} \qquad (2)
$$

where the last inequality is obtained by using the Jensen inequality with the concave function $t \mapsto$ t. Therefore $\langle f, f \rangle_{\mathcal{H}} = 0 \implies f = 0$, showing that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner product. Thus, H is a preHilbert space.

• H is a Hilbert space

Let $(f_n)_{n\in\mathbb{N}}$ a Cauchy sequence of H.

- $(f_n)_{n \in \mathbb{N}}$ and $(f'_n)_{n \in \mathbb{N}}$ are Cauchy sequences in $L^2([0,1])$ $(f_n)_{n\in\mathbb{N}}$ (resp. $(f'_n)_{n\in\mathbb{N}}$) is a Cauchy sequence of $L^2([0,1])$ (by definition of the norm on H), and thus convergences to some $g_0 \in L^2([0,1])$ (resp. $g_1 \in L^2([0,1])$).
- **Theorem** : Convergence in $L^2([0,1]) \implies$ Convergence in $\mathcal{D}'([0,1])$ Let $\phi \in \mathcal{D}([0,1])$ with compact support K_{ϕ} and $(h_n)_{n \in \mathbb{N}}$ a sequence of $L^2([0,1])$ converging to $h \in L^2([0,1])$.
- Since $h, h_n \in L^1_{loc}([0,1])$, we can consider the distributions induced by these functions. Moreover, the Cauchy Scharwz inequality gives us :

$$
| < h, h_n, \phi >_{\mathcal{D}',\mathcal{D}}| = \left| \int_{[0,1]} (h - h_n) \phi \right| \leq ||h - h_n||_{L^2} ||\phi||_{L^2}.
$$

Thus, $(h_n)_n$ converges to h in the distribution sens.

 $-g'_0 = g_1$ in the distribution sens and then in L^2 . Using the previous item, we get that $f_n \to g_0$ in $\mathcal{D}'([0,1])$ and $f'_n \to g_1$ in $\mathcal{D}'([0,1])$. From $f_n \to g_0$ in $\mathcal{D}'([0,1])$, we deduce that $f'_n \to g'_0$ in $\mathcal{D}'([0,1])$. Using the uniqueness of the limit in $\mathcal{D}'([0,1])$, we have $g'_0 = g_1$ in the distribution sens. Since $g_1 \in L^2([0,1])$, we can deduce that $g'_0 \in L^2([0,1])$, and that the equality $g'_0 = g_1$ is also true in $L^2([0,1])$.

We have shown that $f_n \to g_0$ and $f'_n \to g'_0$ in L^2 . Thus, $f_n \to g_0$ in H. We only need to show that g_0 belongs to H , which is true since :

- The inequality (2) gives that convergence in H implies pointwise convergence. Thus, $g_0(0) = \lim_{n \to +\infty} f_n(0) =$ 0 and $g'_0(1) = \lim_{n \to +\infty} f_n(1) = 0.$
- We have already shown that $g'_0 = g_1 \in L^2([0,1])$.
- Finally, g_0 is absolutely continuous since $g_0(x) = \int_0^x$ $g'_0(u)du$.
- \bullet H is a RKHS

Let $x \in [0,1]$. For all $f \in \mathcal{H}$,

$$
|F_x(f)| = |f(x)| \le ||f||_{\mathcal{H}} \text{ using (2)}.
$$

Thus, using the theorem 5, we have that H is a RKHS.

• Reproducing kernel of H Consider the function

$$
K : [0,1] \times [0,1] \to \mathbb{R}
$$

$$
(x,y) \mapsto \begin{cases} \left(t \mapsto e^{-t} + (1 - e^{-x}) \frac{sh(t)}{sh(x)} - 1\right)'(y) & \text{if } y < x \\ 0 & \text{if } x \le y \end{cases}
$$

i.e.

$$
K : [0,1] \times [0,1] \to \mathbb{R}
$$

$$
(x,y) \mapsto \begin{cases} -e^{-y} + (1 - e^{-x}) \frac{ch(y)}{sh(x)} & \text{if } y < x \\ 0 & \text{if } x \le y \end{cases}
$$

For all $x \in [0, 1]$, the function $K_x : t \mapsto K(x, t)$ belongs to H because :

– it is absolutely continuous on $[0, 1]$ since :

- \ast K_x has derivative almost everywhere (except in x)
- ∗ K'_x is Lebsgue integrable

*
$$
\forall t \in [0, 1], K_x(t) = K_x(0) + \int_0^t K'_x(u) du
$$

\n- $\forall y \in [0, 1], K'_x(y) = \left(-\sin(y) + \frac{1-\cos(x)}{\sin(x)} \cos(y) \right) \mathbb{1}_{[0, x]}(y)$ which belongs to $L^2([0, 1])$
\n- and we finally have $K_x(0) = K_x(1) = 0$.

Please note that the function K_x has been built such that $\mathcal{P}(K_x) : y \mapsto \int_0^y K_x(t)dt$ is a solution of the equation $g''(y) - g(y) = 1$ on $[0, x]$ with the conditions $g(0) = 0$ and $g(x) = 0$ (*). Then for all $x \in [0, 1]$ and for all $f \in \mathcal{H},$

$$
\langle f, K_x \rangle_{\mathcal{H}} = \int_0^1 K_x(u) f(u) + f'(u) K'_x(u) du
$$

\n
$$
= \int_0^1 K_x(u) f(u) du + \int_0^1 f'(u) K'_x(u) du, \text{ and using an IPP in the first integral we get}
$$

\n
$$
= \underbrace{\left[\int_0^u K_x(t) dt f(u) \right]_0^1}_{=0} - \int_0^x f'(u) \int_0^u K_x(t) dt du + \int_0^x f'(u) \underbrace{K'_x(u)}_{=P(K_x)''(u)} du
$$

\n
$$
= \int_0^x f'(u) \underbrace{\left(P(K_x)''(u) - P(K_x)(u) \right)}_{=1 \text{ using (*)}} du
$$

\n
$$
= f(x) - \underbrace{f(0)}_{=0 \text{ since } f \in \mathcal{H}}
$$

\n
$$
= f(x)
$$

So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS H .

Exercise 4: Duality

1. We are considering the following optimization problem

$$
\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i))
$$
 such that $||f||_{\mathcal{H}_K} \leq B$.

which is equivalent to

$$
\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) \text{ such that } ||f||_{\mathcal{H}_K}^2 \le B^2.
$$
 (3)

Dualizing the constraint involved in (3), we get that the problem (3) is equivalent to :

$$
\min_{f \in \mathcal{H}_K} \sup_{\lambda \ge 0} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) + \lambda (||f||_{\mathcal{H}_K}^2 - B^2). \tag{4}
$$

Since the function l_y is convex for all $y \in \{-1, +1\}$, we deduce that the optimization problem (4) is a convex optimization problem and qualification holds (since there is no constraint). Thus, strong duality holds. Thus, the problem (4) is equivalent to

$$
\sup_{\lambda \ge 0} \min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) + \lambda (||f||_{\mathcal{H}_K}^2 - B^2).
$$

The KKT conditions give us that there exists $\lambda^* \geq 0$ such that (4) is equivalent to

$$
\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n l_{y_i}(f(x_i)) + \lambda^* (||f||_{\mathcal{H}_K}^2 - B^2) = \min_{f \in \mathcal{H}_K} \frac{1}{n} \Psi(f(x_1), \dots, f(x_n), ||f||_{\mathcal{H}_K}^2),\tag{5}
$$

where $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ is a function of $n+1$ variables, strictly increasing with respect to the last variable. Since K is the reproducing kernel of the RKHS \mathcal{H}_K , we have thanks to the **representer theorem** that a solution f of the optimization problem (5) can be written of the form :

$$
f(x) = \sum_{i=1}^{n} \alpha_i K_{x_i}(x), \quad (\alpha_i)_{i=1}^{n} \in \mathbb{R}^n.
$$

Denoting **K** the matrix of size $n \times n$: $(K(x_i, x_j))_{1 \leq i,j \leq n}$, we have that :

- $\forall i \in [\![1,n]\!], f(x_i) = (\mathbf{K}\alpha)_i$ where α denote the vector $(\alpha_i)_{i=1}^n$.
- $||f||_{\mathcal{H}_K}^2 = \alpha^T \mathbf{K} \alpha.$

The optimization problem (5) is hence equivalent to

$$
\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n l_{y_i}((\mathbf{K}\alpha)_i) + \lambda^* (\alpha^T \mathbf{K}\alpha - B^2) = \min_{\alpha \in \mathbb{R}^n} R(\mathbf{K}\alpha) + \lambda^* (\alpha^T \mathbf{K}\alpha - B^2),
$$
\n(6)

where $R(z) = \frac{1}{n} \sum_{i=1}^{n} l_{y_i}(z_i), \quad \forall z \in \mathbb{R}^n$.

2. We compute the Fenchel-Legendre transform of R. Let $z \in R^n$,

$$
R^*(z) = \sup_{x \in \mathbb{R}^n} \langle x, z \rangle - R(x)
$$

=
$$
\sup_{x \in \mathbb{R}^n} \langle x, z \rangle - \frac{1}{n} \sum_{i=1}^n l_{y_i}(x_i)
$$
, here we remark that the problem is separable
=
$$
\sum_{i=1}^n \left(\sup_{x_i \in \mathbb{R}} \left[x_i z_i - \frac{1}{n} l_{y_i}(x_i) \right] \right)
$$

=
$$
\sum_{i=1}^n \frac{1}{n} l_{y_i}^*(nz_i).
$$

3. We add the slack variable $u = \mathbf{K}\alpha$ in the optimization problem (6). The problem (3) can thus be written as :

$$
\min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda^* (\alpha^T \mathbf{K} \alpha - B^2) \text{ such that } u = \mathbf{K} \alpha.
$$
 (7)

The dual of the problem (7) is :

$$
\sup_{\mu \in \mathbb{R}^n} \quad \min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda^* (\alpha^T \mathbf{K} \alpha - B^2) + \mu^T (\mathbf{K} \alpha - u)
$$

which is equivalent to

$$
\sup_{\mu \in \mathbb{R}^n} \left(\min_{\alpha \in \mathbb{R}^n} \left[\lambda^* (\alpha^T \mathbf{K} \alpha - B^2) + \mu^T \mathbf{K} \alpha \right] + \min_{u \in \mathbb{R}^n} \left[R(u) - \mu^T u \right] \right)
$$

• Since the minimization problem in α is an unconstrained convex optimization problem, an optimal solution is given by setting the gradient to zero which leads to $2\lambda^*$ **K** $\alpha = \mathbf{K}\mu$. Thus, all the optimal solution have the form $\alpha = \frac{\mu}{2\lambda^*} + \epsilon$ with $\epsilon \in Ker(\mathbf{K})$, but all those solutions lead to the same function f since $\mathbf{K}(\frac{\mu}{2\lambda^*} + \epsilon) = \mathbf{K} \frac{\mu}{2\lambda^*}$.

•
$$
\min_{u \in \mathbb{R}^n} \left[R(u) - \mu^T u \right] = - \sup_{u \in \mathbb{R}^n} \left[\mu^T u - R(u) \right] = -R^*(\mu).
$$

We deduce that the above optimization problem is equivalent to

$$
\sup_{\mu \in \mathbb{R}^n} \frac{1}{4\lambda^*} \mu^T \mathbf{K} \mu + \frac{1}{2\lambda^*} \mu^T \mathbf{K} \mu - R^*(\mu) - \lambda^* B^2 = \sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - R^*(\mu) - \lambda^* B^2.
$$

A solution (α, u) from (7) can be easily computed from an optimal solution μ of this dual problem with : $\alpha = \frac{\mu}{2\lambda^*}$ and $u = \mathbf{K}\alpha = \frac{1}{2\lambda^*}\mathbf{K}\mu$. We could have a large choice for α (adding any element of $Ker(\mathbf{K})$) but all of them will lead to the same solution of the original problem defined by : $f(.) = \sum_{i=1}^{n} \alpha_i K(x_i, .).$

- 4. We are now going to the use the previous work to derive the dual problem of the logistic and the squared hinge losses.
	- Logistic loss

We consider the losses $l_y(u) = \ln(1 + e^{-uy})$ for $y \in \{-1, +1\}$. For a given $y \in \{-1, +1\}$, we compute the Fenchel-Legendre transform of l_y :

$$
\forall v \in \mathbb{R}, \ l^*_y(v) = \sup_{u \in \mathbb{R}} uv - \ln(1 + e^{-uy})
$$

First, we remark that

$$
l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ +\infty & \text{if } (v < -1 \text{ and } y = 1) \text{ or } (v > 1 \text{ and } y = -1) \\ 0 & \text{if } v = 0 \text{ or } (v = -1 \text{ and } y = 1) \text{ or } (v = 1 \text{ and } y = -1) \end{cases}
$$

The justifications are given at the end of this document.

We consider now that we are in one of the two remaining cases: $(-1 < v < 0$ and $y = 1)$ or $(0 < v < 1$ and $y = -1$).

The function $u \mapsto uv - \ln(1 + e^{-uy})$ is a concave function. We solve the supremum problem by setting the gradient of this function to 0 :

$$
v + \frac{ye^{-uy}}{1 + e^{-uy}} = 0 \Leftrightarrow e^{-uy}(v + y) = -v \Leftrightarrow u = \frac{-1}{y} \ln\left(\frac{-v}{v + y}\right) = -y \ln\left(\frac{-v}{v + y}\right).
$$

Hence, in those cases, we have $l_y^*(v) = -yv \ln\left(\frac{-v}{v+y}\right) - \ln(1-\frac{v}{v+y}) = -yv \ln\left(\frac{-v}{v+y}\right) - \ln(\frac{y}{v+y}).$ Thus, the dual problem takes the following form with the logistic losses :

$$
\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n l_{y_i}^*(n\mu_i) - \lambda^* B^2
$$

i.e.

$$
\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n \left(-y_i n \mu_i \ln \left(\frac{-n \mu_i}{n \mu_i + y_i} \right) - \ln \left(\frac{y_i}{n \mu_i + y_i} \right) \right) - \lambda^* B^2
$$

s.t. $-1 < n y_i \mu_i < 0, \forall i \in [\![1, n]\!]$

• Squared hinge loss

We consider the losses $l_y(u) = \max(0, 1 - yu)^2$ for $y \in \{-1, +1\}$. For a given $y \in \{-1, +1\}$, we compute the Fenchel-Legendre transform of l_y :

$$
\forall v \in \mathbb{R}, \ l^*_y(v) = \sup_{u \in \mathbb{R}} uv - \max(0, 1 - yu)^2
$$

We have :

$$
l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ -1 + \frac{(2y+v)^2}{4} & \text{otherwise} \end{cases}
$$

Thus, the dual problem takes the following form with the squared hinge losses :

$$
\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n l_{y_i}^*(n\mu_i) - \lambda^* B^2
$$

i.e.

$$
\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - \frac{1}{n} \sum_{i=1}^n \left(-1 + \frac{(2y_i + n\mu_i)^2}{4} \right) - \lambda^* B^2
$$

s.t. $y_i \mu_i \le 0, \forall i \in [\![1, n]\!]$

i.e.

$$
\sup_{\mu \in \mathbb{R}^n} \frac{3}{4\lambda^*} \mu^T \mathbf{K} \mu - y^T \mu - \frac{n}{4} \mu^T \mu - \lambda^* B^2
$$

s.t. $y_i \mu_i \le 0, \forall i \in [\![1, n]\!]$

Justification of the Fenchel-Legendre transforms for the Exercise 4

Logistic Loss

$$
l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ +\infty & \text{if } (v < -1 \text{ and } y = 1) \text{ or } (v > 1 \text{ and } y = -1) \\ 0 & \text{if } v = 0 \text{ or } (v = -1 \text{ and } y = 1) \text{ or } (v = 1 \text{ and } y = -1) \end{cases}
$$

We justify those points :

- If $v > 0$ and $y = 1$, $\lim_{u \to +\infty} uv \ln(1 + e^{-uy}) = \lim_{u \to +\infty} uv \ln(1 + e^{-u}) = +\infty$.
- If $v < 0$ and $y = -1$, $\lim_{u \to -\infty} uv \ln(1 + e^{-uy}) = \lim_{u \to -\infty} uv \ln(1 + e^u) = +\infty$
- If $v < -1$ and $y = 1$, $uv \ln(1 + e^{-uy}) = uv \ln(1 + e^{-u}) = uv + u \ln(e^u + 1) \underset{u \to -\infty}{\sim} u(v + 1)$. Since $v < -1$, $\lim_{u \to -\infty} uv - \ln(1 + e^{-uy}) = +\infty.$
- If $v > 1$ and $y = -1$, $uv \ln(1 + e^{-uy}) = uv \ln(1 + e^u) = uv u \ln(e^{-u} + 1) \underset{u \to +\infty}{\sim} u(v 1)$. Since $v > 1$, $\lim_{u \to +\infty} uv - \ln(1 + e^{-uy}) = +\infty.$
- If $v = -1$ and $y = 1$, $uv \ln(1 + e^{-uy}) = -u \ln(1 + e^{-u})$ which is always non positive and which takes the value 0 for $u = 0$.
- If $v = 1$ and $y = -1$, $uv \ln(1 + e^{-uy}) = u \ln(1 + e^u) = -\ln(1 + e^{-u})$ which is always non positive and which takes the value 0 for $u = 0$.

Squared Hinge Loss

$$
l_y^*(v) = \begin{cases} +\infty & \text{if } (v > 0 \text{ and } y = 1) \text{ or } (v < 0 \text{ and } y = -1) \\ -1 + \frac{(2y+v)^2}{4} & \text{otherwise} \end{cases}
$$

Indeed :

- If $v > 0$ and $y = 1$, $\lim_{u \to +\infty} uv \max(0, 1 yu)^2 = \lim_{u \to +\infty} uv \max(0, 1 u)^2 = +\infty$.
- If $v < 0$ and $y = -1$, $\lim_{u \to -\infty} uv \max(0, 1 yu)^2 = \lim_{u \to -\infty} uv \max(0, 1 + u)^2 = +\infty$.
- The function $u \mapsto uv (1 yu)^2 = -1 u^2 + u(v + 2y)$ (since $y^2 = 1$) reaches its maximum at $u^* = \frac{2y+v}{2}$. Let's prove that u^* is such that $1 - yu^* \ge 0$ in the cases $(v \le 0$ and $y = 1)$ and $(v \ge 0$ and $y = -1)$. We will then deduce directly that $l_y^*(v) = u^*v - (1 - yu^*)^2$ in those cases.
	- If $(v \le 0 \text{ and } y = 1),$

$$
1 - yu^* \ge 0 \Leftrightarrow 1 \ge u^* \Leftrightarrow 1 \ge \frac{2 + v}{2} \Leftrightarrow v \le 0
$$

– If ($v \ge 0$ and $y = -1$),

$$
1 - yu^* \ge 0 \Leftrightarrow -1 \le u^* \Leftrightarrow -1 \le \frac{-2 + v}{2} \Leftrightarrow v \ge 0
$$

Hence, $l_y^*(v) = u^*v - (1 - yu^*)^2 = -1 + \frac{(2y+v)^2}{4}$ $\frac{+v}{4}$.