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Goals of link prediction
Understand, through a generative model, why different vertices are connected
or not.
Generalise these observations to the rest of the graph.

Motivations
In social networks 1

Shared interests, differences in artistic tastes or political opinion.
In biological networks 2

Interactions between molecules or protein.

1. Wasserman, Faust et al., Social network analysis: Methods and applications.
2. Madeira et Oliveira, “Biclustering algorithms for biological data analysis: a survey”.
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A large span of frameworks for link prediction

Supervised / Unsupervised ?

Temporal aspect ?
Yes : Finding missing links.
No :

Links can be created and destroyed over time.
New nodes are entering the graph at each time step. 3

Topological-based link prediction ? Do we have additional features on the
nodes ? 4

Parametric or Non-parametric model ?

Global or Local 5 method ?

Probabilistic / Geometric model ?

3. Dunlavy, Kolda et Acar, “Temporal link prediction using matrix and tensor factorizations”.
4. Wang, Satuluri et Parthasarathy, “Local probabilistic models for link prediction”.
5. Liben-Nowell et Kleinberg, “The link-prediction problem for social networks”.
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In this presentation, we will mainly be focused on

Baldin et Berthet, “Optimal link prediction with matrix logistic regression”

which proposed a method which is
Not temporal
Supervised
Global method
Probabilistic and Parametric

Motivation Adapt usual high-dimensional methods to a model with two
covariates (explanatory variables).

Beyond link prediction, this paper allows to study
Information-Computational gaps.
General method to establish computational lower bounds.
Classical statistical and optimization tools : Establishing minimax
convergence rate and convex relaxation.
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Section 1

Model and Assumptions
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We consider a graph G = ([n],E) with adjacency matrix Y ∈ {0,1}n×n generated
from the following generative model.

An explanatory variable Xi ∈ Rd is associated to each node i ∈ [n].
For some Θ∗ ∈ Sd ,

∀i ∈ [n], Yi,i = 0 and ∀i , j ∈ [n]2, i ≠ j , Yi,j ∼ B(πi,j(Θ∗)),

where

πi,j ∶ Sd → [0,1]

Θ↦ P ((i , j) ∈ E) = σ(X ⊺
i Θ∗Xj) = (1 + exp(−X ⊺

i Θ∗Xj))
−1

Observations
For all (i , j) ∈ Ω, Yi,j is observed.
All the explanatory variables (Xi)i are known.
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Comparaison with other models

Reformulation as a classical logistic regression problem using

X ⊺
i Θ∗Xj = Tr(XjX

⊺
i Θ∗) = ⟨vec(XjX

⊺
i ),vec(Θ∗)⟩.

Generalised linear model.

Graphon model with known explanatory variables.

Trace regression models.
The model is Y = Tr(Θ⊺

∗Z) + ε with Z ∈ Rd1×d2 is a matrix of explanatory
variables, Θ∗ ∈ Rd1×d2 is the matrix of regression coefficients, Y ∈ R is the
response and ε ∈ R is the noise.

Metric learning.
Observations depend on an unknown geometric representation V1, . . . ,Vn of
the variables in a Euclidean space of low dimension. Based on noisy
observations of ⟨Vi ,Vj⟩, we want to recover (Vi)i .
Taking Xi = ei and Θ∗ = V ⊺V gives ⟨Vi ,Vj⟩ = e⊺i V

⊺Vej = X ⊺
i Θ∗Xj .
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Coping with the curse of dimensionality

High-dimensional setting d2 ≫ N = ∣Ω∣.
Motivation of the structural assumptions

Θ∗ =
R

∑
l=1
λlulu

⊺
l

The affinity Σi,j ∶= X ⊺
i Θ∗Xj between vertices i and j is therefore only a function

of the projections of Xi and Xj along the axes ul i.e

Σi,j =
R

∑
l=1
λl(u⊺l Xi)(u⊺l Xj).

Prior Assumption
Only a few of the directions ul have non-
zero impact on the affinity

Θ∗ is low-rank

Only few relevant coefficients of Xi and
Xj influence the affinity

Sparsity on the ul
⇔ Block-sparsity on Θ∗
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Block-sparse matrix logistic regression

Notations For any p,q ∈ [0,∞) and any B ∈ Sd ,

∥B∥p,q = ∥(∥B1,∗∥p, . . . , ∥Bd,∗∥p)∥q ,

where Bi,∗ is the i-th row of B.

∀B ∈ Sn, ∥B∥2
F ,Ω ∶= ∑

(i,j)∈Ω

B2
i,j .

For any k, r ∈ [d] (with r ≤ k),

Pk,r(M) = {Θ ∈ Sd ∶ ∥Θ∥1,1 <M, ∥Θ∥0,0 ≤ k , and rank(Θ) ≤ r}

∥ ⋅ ∥1,1 is the element wise l1 norm on Sd .
∥ ⋅ ∥0,0 counts the number of selected variables.
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Recovering Θ∗ from affinities

Block isometry property

For a matrix X ∈ Rd×n and an integer s ∈ [d], we define ∆Ω,s(X) ∈ (0,1) as the
smallest positive real such that

N(1 −∆Ω,s(X))∥B∥2
F ≤ ∥X⊺BX∥2

F ,Ω ≤ N(1 +∆Ω,s(X))∥B∥2
F ,

for all matrices B ∈ Sd that satisfy the block-sparsity assumption ∥B∥0,0 ≤ s.

The Block isometry property guarantees that the matrix Θ∗ can be recovered
from observations of the affinities Σi,j .
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Block VS Restricted isometry property

Restricted isometry property

For a matrix A ∈ Rn×p and an integer s ∈ [p], δs(A) ∈ (0,1) is the smallest positive
real such that

n(1 − δs(A))∥v∥2
2 ≤ ∥Av∥2

2 ≤ n(1 + δs(A))∥v∥2
2,

for all s-sparse vectors, i.e. satisfying ∥v∥0 ≤ s.
When p = d2, we define δB,s(A) as the smallest positive real such that

n(1 − δB,s(A))∥v∥2
2 ≤ ∥Av∥2

2 ≤ n(1 + δB,s(A))∥v∥2
2,

for all vectors such that v = vec(B), where B satisfies the block-sparsity
assumption ∥B∥0,0 ≤ s.

For a matrix X ∈ Rd×n, let DΩ ∈ RN×d2
be defined row-wise by

DΩ(i , j) = vec(XjX
⊺
i ) for all (i , j) ∈ Ω. It holds that

∆Ω,s(X) = δB,s(DΩ).
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Recovering the affinities from the πi ,j

We do not directly observe the Σi,j , but their image through σ. A condition is
necessary to ensure that the affinities can be recovered from the observed edges.

Identifiability Condition (IC)

There exists a constant M > 0 such that for all Θ in the class Pd,d(M) we have
max(i,j)∈Ω ∣X ⊺

i ΘXj ∣ <M.

Under (IC),
∀(i , j) ∈ Ω, inf

Θ∈Pd,d(M)
σ′(X ⊺

i ΘXj) ≥ L(M) > 0,

where L(M) ∶= σ′(M) = σ(M)(1 − σ(M)).
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Preliminaries

Log-likelihood
lY (Θ) = − ∑

(i,j)∈Ω

log (1 + e(2Yi,j−1)X⊺i ΘXj)

−lY is a convex function of Θ.
Stochastic component of the likelihood
Denoting l ∶ Θ↦ EΘ∗ [lY (Θ)] , it holds

lY (Θ) − l(Θ) = ∑
(i,j)∈Ω

(Yi,j − πi,j(Θ∗))X ⊺
i ΘXj

= ⟪EΩ,X
⊺ΘX⟫,

where EΩ = (Yi,j − πi,j(Θ∗))(i,j)∈Ω with zeros on the complement Ωc .

l(Θ) − l(Θ∗) = − ∑
(i,j)∈Ω

KL (πi,j(Θ∗), πi,j(Θ))

= −KL (PΘ∗ ,PΘ) .
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Section 2

Penalised logistic loss
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Penalised logistic loss

Θ̂ ∈ arg min
Θ∈Pd,d(M)

{−lY (Θ) + p(Θ)}

with a penalty p defined by

p(Θ) = g (rank(Θ), ∥Θ∥0,0) with g(R,K) = cKR + cK log (de
K

) ,

where c > 0 is a universal constant and to be specified further.

Non-asymptotic upper bound

Assume the design matrix X satisfies max(i,j)∈Ω ∣X ⊺
i Θ∗Xj ∣ <M for some M > 0

and all Θ∗ in a given class. Then

sup
Θ∗∈Pk,r (M)

1
N
E [KL(PΘ∗ ,PΘ̂)] ≤ C1 {

kr

N
+ k

N
log(de

k
)} ,

where C1 > 3c is some universal constant for all k = 1, . . . ,d and r = 1, . . . , k .
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Proof (1/2)

Let us recall that l(Θ) = EΘ∗ [lY (Θ)] and that

l(Θ∗) − l(Θ) = ∑
(i,j)∈Ω

KL (πi,j(Θ∗), πi,j(Θ)) .

It suffices to show

sup
Θ∗∈Pk,r (M)

PΘ∗

⎛
⎜⎜⎜
⎝
l(Θ∗) − l(Θ̂) + p(Θ̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=τ2(Θ̂,Θ∗)

> 2p(Θ∗) + R2
t

⎞
⎟⎟⎟
⎠
≤ e−cRt , (∗)

for any Rt > 0 and some numeric constant c > 0. Indeed, then taking R2
t = p(Θ∗),

it follows that l(Θ∗) − l(Θ̂) ≤ 3p(Θ∗) uniformly for all Θ∗ in the considered class
with probability at least 1 − e−c

√
p(Θ∗).

On {τ2(Θ̂,Θ∗) ≤ 2p(Θ∗)}, (∗) clearly holds.
On {τ2(Θ̂,Θ∗) > 2p(Θ∗)}

⟪EΩ,X
⊺(Θ̂ −Θ∗)X⟫ ≥ l(Θ∗) − l(Θ̂) + p(Θ̂) − p(Θ∗) ≥

1
2
τ2(Θ̂,Θ∗).
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Proof (2/2)

Therefore, for any Θ∗ ∈ Pk,r(M), we have

PΘ∗(τ2(Θ̂,Θ∗) > 2p(Θ∗) + R2
t ) ≤ PΘ∗

⎛
⎝

sup
τ(Θ,Θ∗)≥Rt

⟪EΩ,X
⊺(Θ −Θ∗)X⟫

τ2(Θ,Θ∗)
≥ 1
2
⎞
⎠
.

We apply the peeling device : we slice the set τ(Θ,Θ∗) ≥ Rt into pieces on
which the penalty term p(Θ) is fixed and the term l(Θ∗) − l(Θ) is bounded.

PΘ∗

⎛
⎝

sup
τ(Θ,Θ∗)≥Rt

⟪EΩ,X
⊺(Θ −Θ∗)X⟫

τ2(Θ,Θ∗)
≥ 1
2
⎞
⎠

≤
d

∑
K=1

K

∑
R=1

∞

∑
s=1
PΘ∗

⎛
⎜⎜⎜
⎝

sup
Θ ∶ Rt≤τ(Θ,Θ∗)≤2sRt

∥Θ∥0,0=k,rank(Θ)=R

⟪EΩ,X
⊺(Θ −Θ∗)X⟫ ≥ 1

8
22sR2

t

⎞
⎟⎟⎟
⎠
.

To end the proof, we apply
Bousquet’s version of Talagrand’s inequality.
Dudley’s entropy integral bound.
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Going from KL to Σ and Θ.

Let us recall that l(Θ) = EΘ∗ [lY (Θ)] and that

l(Θ∗) − l(Θ) = ∑
(i,j)∈Ω

KL (πi,j(Θ∗), πi,j(Θ)) .

Going from KL to Σ.
Using ∇l(Θ∗) = 0, it holds using Taylor expansion,

l(Θ∗) − l(Θ̂) = 1
2
∑
(i,j)∈Ω

σ′ (X ⊺
i Θ0Xj)⟪XjX

⊺
i ,Θ∗ − Θ̂⟫2

≥ L
2
∑
(i,j)∈Ω

⟪XjX
⊺
i ,Θ∗ − Θ̂⟫2

= L
2
∥X⊺ (Θ∗ − Θ̂)X∥2

F ,Ω,

where Θ0 ∈ [Θ̂,Θ∗] element-wise.

Going from KL to Θ.

L
2
N (1 −∆Ω,d) ∥Θ∗ − Θ̂∥2

F ≤ L
2
∥X⊺ (Θ∗ − Θ̂)X∥2

F ,Ω ≤ l(Θ∗) − l(Θ̂).
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Prediction

Measure the prediction error of an estimator Θ̂ by

E

⎡⎢⎢⎢⎢⎣
∑
(i,j)∈Ω

(πi,j(Θ̂) − πi,j(Θ∗))
2
⎤⎥⎥⎥⎥⎦
,

which is controlled according to the following result using the smoothness of the
logistic function σ.

Solving link prediction

Under (IC),

sup
Θ∗∈Pk,r (M)

1
2N
E [∥Σ∗ − Σ̂∥F ,Ω] ≤ C1

L(M) (kr
N
+ k

N
log(de

k
)) ,

with C1 > 0.
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Section 3

Performance of the penalised MLE
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Low-rank and block-sparse MLE

The rank-constrained maximum likelihood estimators with bounded block size is

Θ̂k,r ∈ arg min
Θ∈Pk,r

{−lY (Θ)} .

Non-asymptotic upper bound on the rate of estimation

Assume the design matrix X satisfies the block isometry property and
max(i,j)∈Ω ∣X ⊺

i Θ∗Xj ∣ <M for some M > 0 and all Θ∗ in a given class. Then for the
maximum likelihood estimator Θ̂k,r ,

sup
Θ∗∈Pk,r (M)

E [∥Θ̂k,r −Θ∗∥2
F ] ≤

C2

L(M)(1 −∆Ω,2k(X)) {kr
N
+ k

N
log(de

k
)} ,

for all k = 1, . . . ,d and r = 1, . . . , k and some constant C2 > 0.
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Lower bounds

Minimax lower bound
Let the design matrix X satisfy the block isometry property. Then for estimating
Θ∗ ∈ Pk,r(M) in the matrix logistic regression model, the following lower bound
on the rate of estimation holds

inf
Θ̂

sup
Θ∗∈Pk,r (M)

E [∥Θ̂ −Θ∗∥2
F ] ≥

C3

(1 +∆Ω,2k(X)) (kr
N
+ k

N
log(de

k
)) ,

where the constant C3 > 0 is independent of d , k , r and the infimum extends
overall estimators Θ̂.

The penalised maximum likelihood approach attains the minimax rate of
estimation over simultaneously block-sparse and low-rank matrices.
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Sparse matrix logistic regression

For any k, r ∈ [d],

Θ̂Lasso ∈ arg min
Θ∈Sd

{−lY (Θ) + λ∥Θ∥1,1},

with λ > 0 to be chosen further, which is equivalent to the logistic Lasso on
vec(Θ).

Theorem
Assume the design matrix X satisfies the block isometry property and
max(i,j)∈Ω ∣X ⊺

i ΘXj ∣ <M for some M > 0 and all Θ∗ in a given class. Then for
λ = C4

√
log d , where C4 > 0 is an appropriate universal constant,

sup
Θ∗∈Pk,r (M)

E [∥Θ̂Lasso −Θ∗∥2
F ] ≤

C5

L(M)(1 −∆Ω,2k(X))
k2

N
log d ,

for all k = 1, . . . ,d and r = 1, . . . , k and some universal constant C5 > 0.
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Section 4

Computational lower bounds
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The Planted Clique problem

Computational lower bound It is the fastest rate of estimation attained by a
(randomised) polynomial-time algorithm in the worst-case scenario.

Idea : Detecting a subspace of Pk,r can be computationally as hard as solving the
dense subgraph detection problem.

The Planted Clique problem
● G(n,1/2) is the distribution of Erdos Renyi graphs
● G(n,1/2, k ,q) is the distribution of graphs constructed by

first picking k vertices independently at random.
connecting all edges in-between with probability q ∈ (1/2,1].
then joining each remaining pair of distinct vertices by an edge independently
at random with probability 1/2.

Planted clique problem refers to the hypothesis testing problem of

H0 ∶ A ∼ G(n,1/2) H1 ∶ A ∼ G(n,1/2, k,1).

based on observing a random graph A drawn from either G(n,1/2) or
G(n,1/2, k,1).



Model and Assumptions Penalised logistic loss Performance of the penalised MLE Computational lower bounds

Dense subgraph detection

Planted Clique problem

2 log2 n c
√
n

k

Polynomial time
algorithm

Planted Clique
Conjecture

Unsolvable

Extension to the dense subgraph detection problem

H0 ∶ A ∼ G(n,1/2) vs H1 ∶ A ∼ G(n,1/2, k ,q), q ∈ (1/2,1].

The dense subgraph detection conjecture (DSD Conjecture)

For any sequence k = kn such that k ≤ nβ for some 0 < β < 1/2, and any
q ∈ (1/2,1], there is no (randomised) polynomial-time algorithm that can correctly
identify the dense subgraph with probability tending to 1 as n →∞, i.e. for any
sequence of (randomised) polynomial-time tests (ψn ∶ Gn → {0,1})n, we have

lim inf
n→∞

{P0(ψn(A) = 1) +P1(ψn(A) = 0)} ≥ 1/3.
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Reduction to the dense subgraph detection problem

Sampling from G(n,1/2) ⇔ Θ0 = 0 ∈ Rd×d

Sampling from G(n,1/2, k ,q) ?

We consider
● N = ∣Ω∣ = (n2).
● ∀i ∈ [n], Xi = N1/4ei ∈ Rd .
● αN = α

√
N

for some α > 0.

GαN

k ∶= {Θ ∈ Pk,1(M) ∶ ∃S ∈ Sk([n]) s.t. Θi,j = { αN if i , j ∈ S
0 otherwise. } .

Then for any Θ ∈ GαN

k ,

P ((i , j) ∈ E ∣Xi ,Xj) = (1 + e−X
⊺

i ΘXj)
−1

= { (1 + e−α)−1 if Θi,j = αN

1/2 otherwise.
.
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The testing problem
H0 ∶ Y ∼ PΘ0 vs H1 ∶ Y ∼ PΘ,Θ ∈ GαN

k .
⇔

The dense subgraph detection problem with q = (1 + e−α)−1.

Computational lower bound of order k2/N
Let Fk be any class of matrices containing GαN

k ∪ {Θ0}. Let c > 0 and f (k ,d ,N)
with f (k ,d ,N) ≤ ck2/N for k = kn < nβ ,0 < β < 1/2 and a sequence d = dn, for all
n > m0 ∈N.

If (DSD Conjecture) holds, for some design X that fulfils the block isometry
property, for any estimator Θ̂, computable in polynomial time, there exists a
sequence (k,d ,N) = (kn,dn,N), such that

1
f (k,d ,N) sup

Θ∗∈Fk

E [∥Θ̂ −Θ∗∥2
F ]→ +∞.

Let’s sketch the proof !
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Proof of the computational lower bound (1/2)

We here provide a proof of the computational lower bound on the prediction error.
Assume that there exists a hypothetical estimator Θ̂ computable in polynomial
time such that

lim sup
n→∞

1
f (k ,d ,N) sup

Θ∗∈Fk

1
N
E [∥X⊺(Θ̂ −Θ∗)X∥2

F ,Ω] ≤ b <∞,

for all sequences (k,d ,N) = (kn,dn,N) and a constant b. Then by Markov’s
inequality, we have

1
N

∥X⊺(Θ̂ −Θ∗)X∥2
F ,W ≤ uf (k ,d ,N),

for some numeric constant u > 0 with probability 1− b/u for all Θ∗ ∈ Fk . Following
the reduction scheme, we consider the design vectors Xi = N1/4ei , i = 1, . . . ,n and
the subset of edges Ω, such that

1
N

∥X⊺(Θ̂ −Θ∗)X∥2
F ,Ω = ∑

(i,j)∈Ω

(Θ̂i,j − (Θ∗)i,j)2 = ∥Θ̂ −Θ∗∥2
F ,Ω,

for any Θ∗ ∈ GαN k .
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Proof of the computational lower bound (2/2)

Thus, in order to separate the hypotheses

H0 ∶ Y ∼ P0 vs. H1 ∶ Y ∼ PΘ, Θ ∈ GαN

k ,

it is natural to employ the following test

ψ(Y ) = 1{∥Θ̂∥F ,Ω ≥ τd,k(u)} ,

where τ2
d,k(u) = uf (k,d ,N). The type I error of this test is controlled

automatically : P0(ψ = 1) ≤ b/u. For the type II error,

sup
Θ∈G

αN
k

PΘ(ψ = 0) = sup
Θ∈G

αN
k

PΘ(∥Θ̂∥F ,Ω < τd,k(u))

≤ sup
Θ∈G

αN
k

PΘ(∥Θ̂ −Θ∥F ,Ω > ∥Θ∥F ,Ω − τd,k(u))

≤ b/u,

provided k2α2
N ≥ 4τ2

d,k(u) = 4uf (k ,d ,N) which holds if α2 ≥ 4uc. Hence,

lim sup
n→∞

⎧⎪⎪⎨⎪⎪⎩
P0(ψ(Y ) = 1) + sup

Θ∈G
αN
k

PΘ(ψ(Y ) = 0)
⎫⎪⎪⎬⎪⎪⎭
≤ 2b/u < 1/3.
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Summary

Statistical and computational trade-off in high-dimensional estimation.

The computational gap is most noticeable for the matrices of rank 1.
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Conclusion

The matrix logistic regression model is very natural to study the connection
between statistical accuracy and computational efficiency.

Block-sparsity is a limiting model selection criterion for polynomial-time
estimation in the logistic regression model.

With a larger parameter space, while the statistical rates might be worse,
they might be closer to those that are computationally achievable.

The logistic regression is also a representative of a large class of
generalised linear models.
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Information-Computational gap : the example of the SBM

Let n, k ∈ N∗, p = (p1, . . . ,pk) a probability vector and W ∈ Sk([0,1]).

Definition : SBM

(X ,G) is drawn under SBM(n,p,W ) if :
Xu ∼ p, ∀u ∈ [n].
Gu,v ∼ B (W (Xu,Xv)), , v ∈ [n], u ≠ v .

Definition : Agreement

Let x , y ∈ [k]n.
A(x , y) = max

π∈Sk

1
n

n

∑
u=1

1xu=π(yu).

Exact Recovery : P(A(X , X̂ ) = 1) = 1 − o(1).
Ð→ No IC gap.
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Information-Computational gap : the example of the SBM

Definition : Weak recovery

WR requires us to separate at least two communities.
Weak recovery is solvable in SBM(n,p,W ) if :

∃ε > 0, i , j ∈ [k], and an algo returning a partition (S ,Sc) of [n] s.t.

P( ∣Ωi ∩ S ∣
∣Ωi ∣

− ∣Ωj ∩ S ∣
∣Ωj ∣

≥ ε) = 1 − o(1),

where ∣Ωi ∣ = {u ∈ [n] ∶ Xu = i} .

Ð→ No IC gap for k = 2 and the conjec-
ture from Decelle and al. states that there
is an IT gap for k ≥ 3.
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