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Introduction
Michael Unser in his paper A unifying representer theorem for inverse problems and machine learning adopts a general
framework to deal with a particular form of optimization problem. He is able to give a specific formulation of the solution(s)
of this problem and gives some conditions providing the uniqueness of the solution.
Michael Unser presents the depth of his result making the link with several widely used machine learning techniques like
compressed sensing, super resolution or kernel methods. Thus, M. Unser offers us :

• a higher understanding of the link between different machine learning methods.

• a general framework allowing to write a really clever proof, getting rid of notion of Gâteaux differentiability required
in some particular cases.

In a first part, I will present the article adding some personal comments to fully understand the theorem. In a second and
last part, I will describe my personal work on the article. I will give detailed proofs (that are not present in the article)
and I will discuss some points of the theorem providing examples.
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1 Presentation of the research paper

1.1 The general representer theorem
We consider X a Banach space. M. Unser is interested in wide class optimization problems, which contains in particular
the classical following one :

argmin
f∈X ′

∣∣f ∣∣X ′ s.t. ⟨νm, f⟩ = ym, m = 1, . . . ,M,

which admits the equivalent form

argmin
f∈X ′

M

∑
m=1

∣ym − ⟨νm, f⟩∣
2
+ λ∣∣f ∣∣p

X ′ ,

for an adequate choice of hyper-parameters λ ∈ R+ and p ≥ 1.
The proof of the main result of the paper is based on the notion of conjugate pair (f, f∗) ∈ X × X ′. We say that (f, f∗)
forms a conjugate pair if ∣∣f∗∣∣X ′ = ∣∣f ∣∣X and if ⟨f∗, f⟩ = ∣∣f∗∣∣X ′ ∣∣f ∣∣X . M. Unser also introduces the notion of duality
mapping which is defined for all f ∈ X as J(f) = {f∗ ∈ X ′ ∶ (f, f∗) is a conjugate pair}.
The notions of conjugate and duality mapping (and their properties) are the keys for the proof of the general representer
theorem of the paper which takes the following form :

Theorem 1.1. We consider the following settings :

• (X ,X ′) is a dual pair of Banach spaces

• Nν = span{νm}Mm=1 ⊂ X with the νm being linearly independent

• ν ∶ X ′ → RM ∶ f ↦ (⟨ν1, f⟩, . . . , ⟨νM , f⟩) is the linear measurement operator

• E ∶ RM × RM → R+ ∪ {+∞} is a proper and strictly convex loss functional

• φ ∶ R+ → R+ is an increasing convex function

Then, for any y ∈ RM , the solution set of the generic optimization problem

S = arg min
f∈X ′

E(y, ν(f)) + φ (∣∣f ∣∣X ′) (1)

is non-empty, convex and weak-* compact and such that any solution f0 ∈ S ⊂ X ′ is a (X ′,X)-conjugate of a common

ν0 =
M

∑
m=1

amνm ∈ Nν ⊂ X ,

with a suitable set of weights a ∈ RM ; i.e. S ⊂ J(ν0).
If X is reflexive and strictly convex and f ↦ φ(∣∣f ∣∣X ′) is strictly convex, then the solution is unique with f0 = ν∗0 ∈ X ′

(Banach conjugate of ν0) and ν0 = f∗0 = (ν∗0 )
∗ ∈ X . In particular, if X is a Hilbert space, then f0 = ∑Mm=1 amν

∗
m where ν∗m

is the Riesz conjugate of νm.

1.2 Comments on the general representer theorem
● Finding the solution when it is unique: How to deal with the weights a ∈ RM of the general representer
theorem ?
The theorem 1.1 provides the general form of the solution(s) of the optimization problem (1), however it does not give any
clue on how to find the right weights a ∈ RM . This is due to the fact that we are considering a really general framework.
When we know that the solution of (1) is unique, the example of applications of the theorem in the final section of the
paper allow us to understand different situations that can be found :

• In the framework of Kernel Methods, the theorem 1.1 allows us to perform a stunning reduction of the dimension
of the problem. Indeed, we can go from an optimization problem on an infinite dimension set to an optimization
problem over a finite dimensional set which can thus be solved using standard techniques.

• In the Tikhonov regularization problem, a can be computed with a closed form expression.
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● When uniqueness is not guaranteed, the general representer theorem is a tool to characterize the set of
solutions S.
In the two previous cases, we knew that there existed a unique solution to (1). When we are considering a framework
where the uniqueness is not guaranteed, using the Krein Milman theorem and the theorem 1.3 1 allows us to describe the
set of solutions S. Indeed :

• applying the Krein Milmamn theorem with Y = X ′ (endowed with the weak-* topology) and K = S ensures that S
is the convex hull of its extreme points. This is valid since S is weak-* compact and convex (from theorem 1.1).

• and the extreme points of the set S are given by the theorem 1.3.

Theorem 1.2. Krein Milman theorem
Let Y be a locally convex topological vector space (assumed to be Hausdorff), and let K be a compact convex subset of Y .
Then, K is the closed convex hull of its extreme points.

Theorem 1.3. All extremal points f0 of the solution set S of Problem (1) can be expressed as

f0 =
K0

∑
k=1

akek,

for some 1 ≤K0 ≤M where the ek are some extremal points of the unit “regularization” ball BX = {f ∈ X ∶ ∣∣f ∣∣X ′ ≤ 1} and
a = (a1, . . . , aK0) ∈ RK0 is a vector of appropriate weights.

The general representer theorem can allow to understand why a l1 regularization term can induce sparsity in the solution
of the optimization problem (1). Indeed, when X ′ = l1(Z), the extreme vectors are intrinsically sparse since there are
equals to ek = (±δ[n − nk])n∈N for some fixed offset nk ∈ Z. Here, δ[.] denotes the Kronecker impulse which is such that
δ[0] = 1 and δ[n] = 0 for n ≠ 0.
Michael Unser also takes the example of the super resolution framework where the theorem 1.3 can also be used to show
that the extreme points of the set S are sparse.

2 Personal work

2.1 Proofs for the duality mapping properties
The proof of the general representer theorem relies deeply on the notion of conjugate and duality mapping. The paper
lists the properties of the duality mapping that are relevant for the theorem 1.1 but no proofs are given. I have decided
to find the proofs of those essential properties given by the theorem 2.1 in order to have a strong understanding of the
theoretical concepts necessary to build the proof of the general representer theorem.

Theorem 2.1. Duality mapping
Let (X ,X ′) be a dual pair of Banach spaces. Then, the following holds:

1. Every f ∈ X admits at least one conjugate f∗ ∈ X ′.

2. J(λf) = λJ(f) for any λ ∈ R.

3. For every f ∈ X , the set J(f) is convex and weak-* closed in X ′.

4. The duality mapping is single-valued if X ′ is strictly convex; the latter condition is also necessary if X is reflexive.

5. When X is reflexive, then the duality map is bijective if and only if both X and X ′ are strictly convex.

1which is a consequence of the work of Boyer et al. 2018
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Proof.

1. Let f ∈ X . We consider the point g = f ∣∣f ∣∣X . Using the Hahn-Banach theorem, there exists g∗ ∈ X ′ with ∣∣g∗∣∣X ′ = 1
(∗) and ⟨g∗, g⟩ = ∣∣g∣∣X (∗). Now, if we define h ∶= g∗∣∣f ∣∣X ∈ X ′, we have that h satisfies ∣∣h∣∣X ′ = ∣∣f ∣∣X (using (∗))
and ⟨h, f⟩ = ⟨g∗, g⟩ = ∣∣g∣∣X = ∣∣f ∣∣2X (using (∗)). Hence, h ∈ J(f).

2. ● First, we prove that ∀f ∈ X , ∀λ > 0, J(λf) = λJ(f).

Let f ∈ X and λ > 0.

- Let g ∈ J(f). We have that

∣∣λg∣∣X ′ = λ∣∣g∣∣X ′ =
®

since g∈J(f)

λ∣∣f ∣∣X = ∣∣λf ∣∣X , and ⟨λg,λf⟩ = λ2⟨g, f⟩ =
®

since g∈J(f)

λ2∣∣g∣∣X ′ ∣∣f ∣∣X = ∣∣λg∣∣X ′ ∣∣λf ∣∣X .

We deduce that λg ∈ J(λf). Hence, λJ(f) ⊂ J(λf).

- Let g ∈ J(λf). We define h ∶= g
λ
.

∣∣h∣∣X ′ =
1

λ
∣∣g∣∣X ′ =

®
since g∈J(λf)

1

λ
∣∣λf ∣∣X = ∣∣f ∣∣X , and ⟨h, f⟩ =

1

λ2
⟨g, λf⟩ =

®
since g∈J(λf)

1

λ2
∣∣g∣∣X ′ ∣∣λf ∣∣X = ∣∣h∣∣X ′ ∣∣f ∣∣X .

We deduce that h = g
λ
∈ J(f). Hence, J(λf) ⊂ λJ(f).

● Now, we prove that ∀f ∈ X , J(−f) = −J(f).

Let f ∈ X and g ∈ J(f).

∣∣ − g∣∣X ′ = ∣∣g∣∣X ′ = ∣∣f ∣∣X = ∣∣ − f ∣∣X , and ⟨−g,−f⟩ = (−1)2⟨g, f⟩ = ∣∣g∣∣X ′ ∣∣f ∣∣X .

We deduce that −g ∈ J(−f). Hence, −J(f) ⊂ J(−f). The converse is also true and can be again proved with basic
manipulations.

3. Convexity of J(f) for f ∈ X

Let f ∈ X , g, h ∈ J(f) and α ∈ [0,1]. We have

● ∣∣αg + (1 − α)h∣∣X ′ ≤
®

using the triangle inequality

α∣∣g∣∣X ′ + (1 − α)∣∣h∣∣X ′ = α∣∣f ∣∣X + (1 − α)∣∣f ∣∣X = ∣∣f ∣∣X

● ∣∣αg + (1 − α)h∣∣X ′ = sup
l∈X , ∣∣l∣∣X=1

⟨αg + (1 − α)h, l⟩ ≥ ⟨αg + (1 − α)h,
f

∣∣f ∣∣X
⟩

=
α

∣∣f ∣∣X
⟨g, f⟩ +

1 − α

∣∣f ∣∣X
⟨h, f⟩ and using the fact that g, h ∈ J(f) we have ⟨g, f⟩ = ⟨h, f⟩ = ∣∣f ∣∣2X (∗)

=
α

∣∣f ∣∣X
∣∣f ∣∣2X +

1 − α

∣∣f ∣∣X
∣∣f ∣∣2X = ∣∣f ∣∣X

Hence, ∣∣αg + (1 − α)h∣∣X ′ = ∣∣f ∣∣X .

Moreover, ⟨αg + (1 − α)h, f⟩ = α⟨g, f⟩ + (1 − α)⟨h, f⟩ =
®

using (∗)

α∣∣f ∣∣2X + (1 − α)∣∣f ∣∣2X = ∣∣f ∣∣2X = ∣∣αg + (1 − α)h∣∣X ′ ∣∣f ∣∣X

where we used what we have just shown for the last equality.

We deduce that J(f) is a convex subset of X ′.

Weak-* closeness of J(f) for f ∈ X

Now we consider (gn)n∈N ∈ J(f)N weakly-* converging towards g ∈ X ′. Let’s prove that g ∈ J(f).
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• Let’s prove that ∣∣g∣∣X ′ = ∣∣f ∣∣X .
For all n ∈ N and for all s ∈ X we have ⟨gn, s⟩ ≤ sup

l∈X ∣∣l∣∣X=1

⟨gn, l⟩ = ∣∣gn∣∣X ′ = ∣∣f ∣∣X since gn ∈ J(f). Taking the

limit when n → +∞, we get that lim
n→+∞

⟨gn, s⟩ ≤ ∣∣f ∣∣X . By taking the supremum over s ∈ X such that ∣∣s∣∣X = 1

we finally have

∣∣g∣∣X ′ = sup
l∈X ∣∣l∣∣X=1

⟨g, l⟩ = sup
s∈X ∣∣s∣∣X=1

lim
n→+∞

⟨gn, s⟩ ≤ ∣∣f ∣∣X . (2)

The other inequality can be computed more easily. First we remark that for all n ∈ N, since gn ∈ J(f), we have
that ⟨gn, f⟩ = ∣∣f ∣∣2X . This remark allows us to find the desired lower bound on ∣∣g∣∣X ′ .

∣∣g∣∣X ′ = sup
l∈X ∣∣l∣∣X=1

⟨g, l⟩ ≥ ⟨g,
f

∣∣f ∣∣X
⟩ = lim

n→+∞
⟨gn,

f

∣∣f ∣∣X
⟩ =

1

∣∣f ∣∣X
lim
n→+∞

⟨gn, f⟩ = ∣∣f ∣∣X . (3)

From (2) and (3), we can conclude that ∣∣g∣∣X ′ = ∣∣f ∣∣X .

• ⟨g, f⟩ = lim
n→+∞

⟨gn, f⟩ = ∣∣f ∣∣2X since for all n ∈ N, gn ∈ J(f). Using the fact that we proved ∣∣g∣∣X ′ = ∣∣f ∣∣X , we have
⟨g, f⟩ = ∣∣g∣∣X ′ ∣∣f ∣∣X .

We deduce from the two previous items that g ∈ J(f). We have just proved that J(f) is weak-* closed in X ′.

4. We suppose that X ′ is strictly convex.

Let f ∈ X , α ∈ (0,1) and g, h ∈ J(f).

Without loss of generality, we suppose that ∣∣f ∣∣X = 1. Using the point 3., we know that αg + (1 − α)h ∈ J(f) since
J(f) is convex and g, h ∈ J(f). We then deduce that ∣∣αg + (1 − α)h∣∣X ′ = ∣∣f ∣∣X = 1 (∗).

Since g, h ∈ J(f), we also have that ∣∣g∣∣X ′ = ∣∣h∣∣X ′ = ∣∣f ∣∣X = 1. Moreover X ′ is assumed strictly convex. We deduce
that if g is different from h, we would have that ∣∣αg + (1 − α)h∣∣X ′ < 1, which would be in contradiction with the
equality (∗).

Hence, we deduce that ∀f ∈ X , J(f) contains at most one element. Using the point 1., we conclude the J is
single-valued.

We suppose that X is reflexive and that J is single-valued

Lemma 2.1. Let F be a Banach space. If any g ∈ F ′ assumes its supremum at most in one point of the unit ball,
then F is strictly convex.

Proof. We will proof the contrapositive. Suppose that F is not strictly convex. Then there exists f1, f2 ∈ X and
α ∈ (0,1) so that f1 ≠ f2, ∣∣f1∣∣X = ∣∣f2∣∣X = 1 and ∣∣αf1 + (1 − α)f2∣∣X = 1.

• First we prove that we can consider α = 1
2
by proving that the segment line [f1, f2] is on the unit ball.

We consider α0 such that α < α0 < 1. Since we have αf1 + (1 − α)f2 =
α
α0

(α0f1 + (1 − α0)f2) + (1 − α
α0

)f2, we
have the following using Cauchy Schwarz inequality :

1 = ∣∣α0f1 + (1 − α0)f2∣∣F ≤
α

α0
∣∣α0f1 + (1 − α0)f2∣∣F + 1 −

α

α0
.

We deduce that ∣∣α0f1 + (1 − α0)f2∣∣F ≥ 1 which means that ∣∣α0f1 + (1 − α0)f2∣∣F = 1 (since ∣∣f1∣∣F = ∣∣f2∣∣F = 1).

We could be similar computations that for α0 such that 0 < α0 < α, α0f1 + (1 − α0)f2 belongs to the unit ball.
We can conclude that the segment [f1, f2] is on the unit ball. In particular, we have ∣∣f1 + f2∣∣F = 2 (with
α0 =

1
2
).

• Using the Hahn-Banach theorem, there exists an element g ∈ X ′ such that ∣∣g∣∣X ′ = 1 and ⟨g, f1+f2
2

⟩ = ∣∣
f1+f2

2
∣∣
X
=

1. Hence, ⟨g, f1⟩ + ⟨g, f2⟩ = 2.
As ⟨g, f1⟩ ≤ 1 and ⟨g, f2⟩ ≤ 1, it follows that ⟨g, f1⟩ = ⟨g, f2⟩ = ∣∣g∣∣X ′ = 1. This means that g ∈ F ′ assumes its
supremum at least in two different points of the unit ball, which concludes the proof.
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We go back to the proof of the second part of the item 4. If we suppose by the absurd that X ′ is not strictly convex,
the lemma 2.1 applied with F = X ′ gives us that there exists f ∈ X ′′ and g, h ∈ X ′ with g ≠ h and

∣∣g∣∣X ′ = ∣∣h∣∣X ′ = 1 and ⟨f, g⟩ = ⟨f, h⟩ = ∣∣f ∣∣X ′′ . (4)

But, since X is reflexive, we have that f ∈ X . Then, the two relations of (4) give us that g ∶= g∣∣f ∣∣X and h ∶= h∣∣f ∣∣X
both belong to J(f). Since g ≠ h (since g ≠ h), we find a contradiction with the fact that J is single-valued.

Hence, X ′ must be strictly convex.

2.2 Proof of the general representer theorem
The existence of the solution in the general case is obtained using a very usual result on convex optimization. Similarly,
the uniqueness of the solution in the case where X is reflexive and strictly convex and f ↦ φ(∣∣f ∣∣X ′) is strictly convex
comes from a usual result of convex optimization.

The trickier part of the proof lies in the general expression of the solution(s) (in the general case).

1. A key point of the proof is to describe all the solutions of the optimization problem (1) as the solutions of another
optimization problem parametrized by some z0 ∈ RM :

Sz0 = arg min
f∈X ′

∣∣f ∣∣X ′ s.t. ν(f) = z. (5)

Stated otherwise, there exists z0 ∈ RM (unique) such that all the set of solutions of the optimization problem (2)
coincides with Sz0 . M. Unser briefly justifies this fact explaining that the contrary would lead to a contradiction
using strict convexity. I propose to detail here this point which constitutes the cornerstone of the proof.

Suppose that there exists f1 and f2 with f1 ≠ f2 two solutions of the problem (1) such that z1 ∶= ν(f1) ≠ ν(f2) ∶= z2.
We then consider α ∈ (0,1) and f ∶= αf1 +(1−α)f2. We will show that the f leads to a value for the objective function
of the problem (1) which is strictly lower than the one associated with f1 and f2. This will be a contradiction since f1
and f2 are minimizers.
The objective function F of the problem (1) expressed with the element f ∈ X is

F (f) ∶= E(y, f) + φ(∣∣f ∣∣X ) = E (y,αf1 + (1 − α)f2) + φ(∣∣αf1 + (1 − α)f2∣∣X ′).

● Using the convexity of the norm ∣∣.∣∣X ′ and the fact that φ is increasing, we have

φ(∣∣αf1 + (1 − α)f2∣∣X ′) ≤ αφ(∣∣f1∣∣X ′) + (1 − α)φ(∣∣f2∣∣X ′).

● Using the strict convexity of the function E, we also have (since f1 ≠ f2 and since α ∈ (0,1)):

E(y,αf1 + (1 − α)f2)<αE(y, f1) + (1 − α)E(y, f2).

Gathering this two points leads to

F (f) = E(y, f) + φ(∣∣f ∣∣X ′) < α (E(y, f1) + φ(∣∣f1∣∣X ′))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=F (f1)

+(1 − α) (E(y, f2) + φ(∣∣f2∣∣X ′))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=F (f2)

.

Since f1 and f2 are minimizers of F , we have F (f1) = F (f2). We finally conclude that F (f) < F (f1) = F (f2) which
contradicts the fact that f1 and f2 are minimizers of F .

2. Now we consider the element z ∈ RM such that all solution f of (1) satisfies ν(f) = z. The second step of the proof
consists in showing that Sz ⊂ J(ν0) for any extremal element ν0 ∈ {g ∈ Nν ∶ λ(g) = ∣∣λ∣∣ × ∣∣g∣∣X and ∣∣λ∣∣ = ∣∣g∣∣X }.
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2.3 The "predual space assumption" is necessary
In the general representer theorem (GRT), we are looking for a function f ∈ X ′ which minimizes the objective function.
This formulation supposes that the space X ′ on which we are looking for solution(s) admits a pre-dual space. M. Unser
has insisted during the class on this assumption, claiming that it was necessary. Here I propose to give a counter example
to confirm his claim. I dig into the literature and I found in Schlegel 2018 a case where the problem doesn’t admit a
solution of the form given by the GRT when we look for a solution in a space Y that does not admit a predual space.

We consider Y = l1 and we define x and w in l∞ by :

∀i ∈ N, xi = {
i
i+1

if i is odd
0 otherwise. i.e x = (

1

2
,0,

3

4
,0, . . .)

∀i ∈ N, wi = {
i
i+1

if i is even
0 otherwise. i.e w = (0,

2

3
,0,

4

5
, . . .)

We then consider νx and νw in (l1)
′ ≅ l∞ associated with x and y, i.e. for all z ∈ l1, ⟨νx, z⟩ = ∑n∈N znxn and ⟨νw, z⟩ =

∑n∈Nwnzn.
We are interesting in the following optimization problem for any y ∈ R2:

S = arg min
z∈Y

(y1 − ⟨νx, z⟩)
2
+ (y2 − ⟨νw, z⟩)

2
+ ∣∣z∣∣2l1 (6)

We are satisfying all the conditions of the GRT, except the fact that Y admits a predual space. Indeed :

• νw and νx are linearly independent

• ν ∶ l1 → R2 ∶ z ↦ (⟨νx, z⟩, ⟨νw, z⟩) is the linear measurement operator

• E ∶ R2×R2 → R+∪{+∞} is such that E(a, b) = (a1−b1)
2+(a2−b2)

2 : It is a proper and strictly convex loss functional

• φ = ∣∣.∣∣2l1 ∶ R
+ → R+ is an increasing convex function

However, we have that ∣∣νx∣∣l′1 = ∣∣νy ∣∣l′1 = 1 (∗1), but it is not possible to find a vector z ∈ l1 with ||z||l1 = 1 such that
⟨νx, z⟩ = 1 or ⟨νw, z⟩ = 1 (∗2) (by construction of x and w). This implies that for any z ∈ l1, νx ∉ J(z) and νy ∉ J(z) (∗).
⎛

⎝
Indeed, with the definition of the duality mapping, we have J(z) = {ν ∈ (l1)

′ ∶ ⟨ν, z⟩ = ∣∣ν∣∣ × ∣∣z∣∣ and ∣∣ν∣∣ = ∣∣z∣∣}. Thus

using (∗1) we have that νx ∈ J(z) would imply that 1 = ∣∣νx∣∣ = ∣∣z∣∣ and so ⟨νx, z⟩ = 1 which is not possible by (∗2)
⎞

⎠
.

By construction of x and w, the result is also true for any linear combination of νx and νw, i.e.

Span(νx, νw) ∩ J(z) = ∅, ∀z ∈ l1.

Let me justify in details this point. We suppose by contradiction that there exists z ∈ l1 such that there exist λ,µ ∈ R2

with ν ∶= λνx + µνw ∈ J(z).

• First, I compute the norm of ν.

∣∣ν∣∣l′1 = sup
c∈l1 ∣∣c∣∣l1=1

∣⟨ν, c⟩∣

= sup
c∈l1 ∣∣c∣∣l1=1

∣λ⟨νx, c⟩ + µ⟨νw, c⟩∣ and since x and w have disjoint supports :

= sup
c∈l1 ∣∣c∣∣l1=1

∣λ⟨νx, c⟩∣ + sup
d∈l1 ∣∣d∣∣l1=1

∣µ⟨νw, d⟩∣

= ∣λ∣ ∣∣νx∣∣l′1
´¹¹¹¹¹¸¹¹¹¹¶

=1

+∣µ∣ ∣∣νw ∣∣l′1
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

=1

= ∣λ∣ + ∣µ∣
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• Now, we can finally get a contradiction.

We consider z̃ = z
∣∣z∣∣l1

.

Using (∗) (or simply looking at the definition of x and w), we have, since ∣∣z̃∣∣l1 = 1, that

∣⟨νx, z̃⟩∣ < 1 and ∣⟨νw, z̃⟩∣ < 1.

Thus : ∣⟨ν, z̃⟩∣ =
®

since x and w have disjoint supports.

∣λ∣ × ∣⟨νx, z̃⟩∣ + ∣µ∣ × ∣⟨νw, z̃⟩∣ < ∣λ∣ + ∣µ∣.

Multiplying by ∣∣z∣∣l1 , the last inequality can also be written as

∣⟨ν, z⟩∣ < (∣λ∣ + ∣µ∣
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∣∣ν∣∣′

l1

)∣∣z∣∣l1 = ∣∣ν∣∣l′1 ∣∣z∣∣l1 .

This strict inequality contradicts the fact that ν ∈ J(z). We conclude that

Span(νx, νw) ∩ J(z) = ∅, ∀z ∈ l1.

If the GRT was true, it would exist ν ∈ Span(νx, νw) such that for any solution z of the problem (6), (z, ν) would be a
conjugate pair. This would imply that ν ∈ Span(νx, νw) ∩ J(z) which is absurd since it is the empty set.
Hence, the space in which a solution is searched needs to admit a predual space if we hope the result of the GRT to hold.

Conclusion
The result given by the studied paper is not constructive in the sense that the form of the solution(s) is given without
providing a way to compute it. However, the GRT allows us to adopt a more general point of view and gives us the key to
make links between different essential theorems of machine learning and inverse problems. The proof of the GRT is very
elegant using only properties on Banach spaces and duality.

This work leads me to think about some possible extensions. With the other courses that I followed with this MVA class,
I naturally wonder what can be said if we are not optimizing over Banach spaces but over manifolds. M. Unser also
concludes giving other directions for future research like the way to deal with pseudo-norm.
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