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Industries have now well understood the interest to use statistical and machine learning tools to
develop and improve their activity. Data being the fuel of such techniques, people put a lot of effort in
gathering as much as information as possible on their business. In this context, engeniors often have
to deal with high-dimensional datasets where a lot of features are not relevant to address the question
at stake. One big challenge for them is to identify the features that are essential to explain the studied
phenomena. To cope with this issue, variable selection has emerged as an active field of research.
In this homework, we shed light on a recent method to control the False Discovery Rate (FDR) for variable
selection in linear models.

1 Preliminaries

Let us consider a design matrix (also called matrix of features) X ∈ Rn×d . We consider the gaussian model
where we observe a vector y ∈ Rn given by

y ∼N (Xβ∗,σ2Idn),

for some β∗ ∈ Rp which is unknown and some noise variance σ2 > 0.
When the number of features n is significantly smaller than d or/and when we have the prior knowledge

that only a small number of predictors are relevant to explain the response variable, it is common to
consider the Lasso problem

β̂λ ∈ arg min
β∈Rp

§

1
2n
‖y − Xβ‖2

2 +λ‖β‖1

ª
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This problem has been extensively studied from a theoretical point of view, and one can mention for
example that if the entries of the predictor matrix X are drawn from a continuous probability distribution,
then the lasso solution is unique with probability one (regardless of the size of n and p). It is now
well-known that optimal solutions of the Lasso problem are sparse, meaning that they have some zero
coefficients. Actually the larger λ, the larger the number of zeros in β̂λ. Hence, varying the regularization
parameter λ, we obtain different models in which more or less variables have a non-zero coefficient.
Intuitively, it seems reasonable to select variables whose fitted coefficient is (in absolute value) above
some significance threshold. However, it is not an easy task to choose the threshold (or the value of λ) in
such a way as to control the Type-I error.

The difficulty arises from the distribution of the estimated coefficients for the null variables being
unknown, but at least some of them most likely being non-zero. Moreover, the fitted coefficients are
correlated among each other and an incorrect threshold can yield either a very high proportion of false
discoveries (if too low) or very low power (if too high).

2 The Candès’ approach

To overcome the above mentioned difficulties Candès and Barber in [1] introduced the knockoff filter. The
method consists in constructing dummies covariates eX j that mimic the correlation structure of the true
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features. The so-called knockoffs features eX j should be understood as a negative control group. This
imitation needs to be carefully designed to ensure a procedure controlling the FDR.

Considering the features X j have been normalized – meaning that Σ j, j = ‖X j‖2 = 1 for Σ= X>X – a
n× p matrix eX give valid knockoffs if

(i) eX> eX = Σ.

(ii) X> eX = Σ− diag(s) where s is a p-dimensional nonnegative vector.

Condition (i) ensures that eX has the same covariance structure as the original matrix X . Condition
(ii) states that the correlations between distinct original and knockoff variables are the same as those
between the originals. However, comparing a feature X j to its knockoff eX j , we see that

eX>j X j = Σ j, j − s j = 1− s j .

The role of s is to make eX as uncorrelated with X as possible in order to increase statistical power
during variable selection.

Define Z j = sup{λ : β̂(λ) 6= 0} for j = 1, . . . , 2p where β̂(λ) is the solution to the augmented Lasso
model regressing y on |X eX ]. We define Wj = (Z j ∨ Z j+p)sign(Z j − Z j+p). Note that Z j corresponds to the
point λ on the Lasso regularization path at which feature X j first enters the model. We then expect that
Z j is large for most of the signals, and small for most of the null variables. Hence, a large positive value of
Wj indicates that variable X j enters the Lasso model early (at some large value of λ) and that it does so
before its knockoff copy eX j . Hence, this is an indication that this variable is a genuine signal and belongs
in the model.

We wish to select variables such that Wj is large and positive, i.e. such that Wj ≥ t for some t > 0.
Letting q be the target FDR, define a data-dependent threshold T as:

T =min{t > 0 :
1+#{ j : Wj ≤ −t}
#{ j : Wj ≥ t} ∨ 1

≤ q},

(or T = +∞ if this set is empty).

1. Justify that when T < +∞, T belongs to the set W = {|Wj | : j = 1, . . . , p}\{0}.

In the following, we consider that n > 2p and we denote k̂ the largest integer k ∈ [p] such that
|Wk|= T .

3 Construction of Knockoffs

2. Give a lower and an upper bound on the (s j) j to ensure that eX exists. You may use the fact that

for any symmetric matrix, M =
�

A B
B> C

�

with D a (square) positive definite matrix, M is positive

semidefinite if and only if the Schur complement of the block D given by A− BD−1B> is positive
semidefinite.

3. Show that for s satisfying the condition of the previous question, eX = X (I − Σ−1diag(s)) + eUC
leads to valid knockoffs where eU is an n× p orthonormal matrix that is orthogonal to the span of
the features X , and C>C = 2diag(s)− diag(s)Σ−1diag(s) is a Cholesky decomposition. Justify the
existence of such matrix eU .

4. Explain why this approach does not work anymore if 2p > n.

5. Actually a simple trick can be used to extend the previous knockoffs construction to the case where
p ≤ n< 2p. If the noise level σ2 > 0 is known, one can simply draw y ′ ∼N (0,σ2Id2p−n). Then by
independence of the gaussian vector y and y ′ it holds

�

y
y ′

�

∼N
��

X
0

�

β ,σ2Id
�

,
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and we can apply the previous procedure to this row-augmented data.
In the case where σ2 is unknown, propose a modification of this approach to obtain knockoffs. Give
the details for a practical implementation of this method.

4 Exchangeability results

6. Pairwise exchangeability for the features.
Prove that for any subset S ⊂ {1, . . . , p},

[X eX ]>swap(S)[X eX ]swap(S) = [X eX ]>[X eX ].

That is, the Gram matrix of [X eX ] is unchanged when we swap X j and eX j for each j ∈ S.

7. Pairwise exchangeability for the response.
Prove that for any subset S of nulls,

[X eX ]>swap(S) y
d
= [X eX ]> y.

That is, the distribution of the product [X eX ]> y is unchanged when we swap X j and eX j for each
j ∈ S, as long as none of the swapped features appear in the true model.

8. i.i.d. signs for the nulls.

Let ε ∈ {±1}p be a sign sequence independent of W , with ε j = +1 for all non-null j and ε j
i.i.d.∼ {±1}

for null j. Prove that

(W1, . . . , Wp)
d
= (W1ε1, . . . , Wpεp).

You may prove and use the antisymmetry property which states that swapping X j and eX j has the
effect of switching the sign of Wj .

9. Deduce that #{ j : β j = 0, Wj ≤ −t} is distributed as #{ j : β j = 0, Wj ≥ t}.

5 Recasting Knockoff filter as a sequential testing procedure

Let m= #{ j : Wj 6= 0}. The knockoff filter never selects variable j when Wj = 0, hence we can ignore
such variables. Assume without loss of generality that |W1| ≥ |W2| ≥ · · · ≥ |Wm|> 0, and set

∀ j ∈ [m], p j =
1
2
1Wj>0 + 1Wj<0,

which can be thought of as 1-bit p-values. It then follows from Question 8. that the null p-values are i.i.d.
with P

�

p j = 1/2
�

= 1/2 = P
�

p j = 1
�

and are independent from the others. Setting K to be the indices of
the strict inequalities,

K = {k ∈ [m] : |Wk|> |Wk+1|} ∪ {m},

one sees that the correlation-preserving proxy method is now equivalent to a sequential testing procedure
on these p-values. Indeed for any k ∈ K ,

1+#{ j ≤ k : p j > 1/2}
#{ j ≤ k : p j ≤ 1/2} ∨ 1

=
1+#{ j ≤ k : Wj < 0}
#{ j ≤ k : Wj > 0} ∨ 1

=
1+#{ j : Wj ≤ −|Wk|}
#{ j : Wj ≥ |Wk|} ∨ 1

.

The first equality follows from the definition of p j . The second equality holds because the absolute values
of W are arranged in nonincreasing order; by definition of K , the inequality |Wj | ≥ |Wk| is only possible
if it holds that j ≤ k. Therefore Wj ≥ |Wk| (respectively, Wj ≤ −|Wk|) is true if and only if j ≤ k and
Wj > 0 (respectively, j ≤ k and Wj < 0). Hence, finding the largest k such that the ratio in the left-hand
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side is below q is the same as finding the smallest |Wk| such that the right-hand side is below q. This is
equivalent to finding the minimum t ∈W such that

1+#{ j : Wj ≤ −t}
#{ j : Wj ≥ t} ∨ 1

≤ q,

which is the knockoff threshold. Finally, rejecting the p-values obeying p j ≤ 1/2 is the same as rejecting
the positive Wj ’s.

6 Proof

10. For k = m, m− 1, . . . , 1, 0, put

V+(k) = #{null j : 1≤ j ≤ k, p j ≤
1
2
}, and V−(k) = #{null j : 1≤ j ≤ k, p j >

1
2
}

with the convention that V±(0) = 0. Let Fk be the filtration defined by knowing all the non-null
p-values, as well as V±(k0) for all k0 ≥ k.
Prove then that the process

M(k) =
V+(k)

1+ V−(k)

is a super-martingale running backward in time with respect to Fk.

11. Deduce that

E
�

M(k̂)
�

≤ E

�

#{null j : 1≤ j ≤ k, p j ≤
1
2}

1+#{null j : 1≤ j ≤ k, p j >
1
2}

�

.

12. Set X = #{null j : 1≤ j ≤ k, p j ≤
1
2}. The independence of the nulls together with the stochastic

dominance p j

d
≥ Unif[0, 1]1 valid for all nulls imply that X

d
≤ Y , where Y ∼ Binomial(N , 1

2 ), where
N is the total number of nulls.
Using this property, show that

E
�

X
1+ N − X

�

≤ 1.

13. Recall that the FDP is define by V
R∨1 where V = #{null j ≤ k̂ : p j ≤

1
2} and R = #{ j ≤ k̂ : p j ≤

1
2}.

Conclude by showing that

E
�

V
R∨ 1

�

≤ q.

7 Discussion

Multiple testing is an active field of research and a large span of methods have recently emerged. Until
recently, most methods were assuming independent p-values. The knockoff filter has the advantage to
bypass this limitation. Nevertheless, the above version of Knockoffs can only be use when n> p which is
a strong assumption and makes the method useless in most industrial problems that are typically high
dimensional. Candès and al. proposed an extension of the Knockoff filter in [2] that can be used in
high dimensional settings. This approach consider that the design is randomly sampled from a known
distribution. The method is proved to control the FDR. The generation of knockoffs is no more deterministic
but random and can be tricky to implement in practice. That’s why Candès and al. introduced in [3] a
deep learning approach to learn knockoffs to overcome the previous computational issue (but we lose the
theoretical guarantees regarding FDR control).

1that is, for all null j and all u ∈ [0, 1], P
�

p j ≤ u
�

≤ u.
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