The Shapiro-Wilk test is a test of normality. Empirically, this test appears to be most powerful than other famous tests for normality such as Lilliefors test. In the following, we consider i.i.d. realizations \(y_{1},...,y_n\) of some random variable \(Y\).

1 Intuition behind the test

The basis idea behind the Shapiro-Wilk test is to estimate the variance of the sample \((y_i)_{1\leq i \leq n}\) in two ways:

  • under the null (i.e. if observations are drawn from a normal distribution), we can estimate the variance through the slope of the regression line in the QQ-Plot

  • using the standard estimator of the population variance \(S^2_n = \frac{1}{n-1}\sum_{i=1}^n (y_i-\bar y)^2\) where \(\bar y = n^{-1}\sum_{i=1}^n y_i\).

Both estimated values should approximately equal in the case of a normal distribution and thus should result in a quotient of close to 1. If the quotient is significantly lower than 1 then the null hypothesis (of having a normal distribution) should be rejected.

Let us show in what follows how we can estimate the slope of the QQ-Plot.

2 Variance estimation using order statistics

Our goal is to know if the \(y_i\)’s are realizations of an underlying normally distributed random variable. We denote \((y_{(1)}, ..., y_{(n)})\) the vector of ordered observations (in ascending order). We denote \(x_{1},...,x_n\) i.i.d. samples drawn from a standard normal distribution \(\mathcal N(0,1)\). Analogously, we denote \(x_{(1)}\leq x_{(2)}\leq ...\leq x_{(n)}\) the ordered sequence. For each \(i \in [n]\), let \(m_i:= \mathbb E[x_{(i)}].\)

If the \(y_i\)’s come from a normal distribution \(\mathcal N(\mu, \sigma^2)\) (with \(\mu \in \mathbb R\), \(\sigma^2>0\)), we can write \[y_{(i)}=\mu + \sigma x_{(i)} = \mu + \sigma m_{i} + \sigma (x_{(i)}-m_i),\] where we can interpret \(\epsilon_i:=(x_{(i)}-m_i)\) has a noise term and it holds \[ \mathbb E[\epsilon_i]=0, \quad Cov(\epsilon_i,\epsilon_j) = \sigma^2 Cov(x_{(i)},x_{(j)} ), \quad \forall i,j \in [n]. \quad (*)\] Hence, we get that \[\begin{equation} \label{eq:extended-eq} \mathbf y = \begin{bmatrix} \mathbf 1 & \mathbf m \end{bmatrix} \begin{bmatrix} \mu \\ \sigma^2\end{bmatrix} + \mathbf \epsilon, \end{equation}\] where \(\mathbf y =(y_{(1)},...,y_{(n)})^{\top}\), \(\mathbf m =(m_{1}, ..., m_{n})^{\top}\), \(\mathbf 1 =(1, ..., 1)^{\top}\) and with \(\mathbf \epsilon \sim \mathcal N(0,\sigma^2 V)\) where \(V=\left( Cov(x_{(i)},x_{(j)} )\right)_{i,j}\) is the covariance matrix of the standard normal order statistics. This shows that \(\sigma\) is the slope of the QQ-Plot, namely the slope of the regression line of the ordered \(y_{(i)}\)’s on the \(m_i\). One can prove that the best linear unbiased estimators (BLUEs) of the two parameters \(\mu\) and \(\sigma\) in the generalized regression model \((*)\) are \[\hat \mu = \frac{\mathbf 1 ^{\top}V ^{-1}y}{\mathbf 1^{\top}V^{-1} \mathbf 1}\quad \text{and}\quad \hat \sigma = \frac{\mathbf m ^{\top}V ^{-1}y}{\mathbf m^{\top}V^{-1} \mathbf m}.\]

3 The Shapiro Wilk test

The test statistic is

\[\begin{equation*} W =\dfrac{\left( \sum_{i=1}^n a_i y_{(i)} \right)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}, \end{equation*}\]

where

\[ \bar{y} := \frac{1}{n}\sum_{i=1}^n y_i \quad \text{and}\quad \mathbf a:=\frac{V ^{-1}\mathbf m}{\left(\mathbf m^{\top}V^{-1}V^{-1} \mathbf m\right)^{1/2}}.\]

Note that \[(n-1)W = \frac{\hat \sigma^2}{S_n^2} \times \frac{(\mathbf m^{\top}V^{-1} \mathbf m)^2}{\mathbf m^{\top}V^{-1}V^{-1} \mathbf m} =\frac{\hat \sigma^2}{S_n^2} \times \frac{\kappa^2}{\psi}, \] with \(\kappa := \mathbf m^{\top}V^{-1} \mathbf m\) and \(\psi := \mathbf m^{\top}V^{-1}V^{-1} \mathbf m\).

That is, up to a constant, \(W\) is the squared ratio of the best linear unbiased estimator (BLUE) \(\hat \sigma\) of the slope of a regression line of the ordered \(y_{(i)}\) on the \(m_i\) and of the estimator of the standard deviation \(S^2_n\).

4 Studying the evolution of the Shapiro test Statistic using mixture of gaussian and exponential distributions

We vary a mixing coefficient \(\alpha\) between \(0\) and \(1\) and we compute the Shapiro test statistic for samples drawn from the mixture distribution \[\alpha \mathcal N(0,1) + (1-\alpha) \mathcal E(1).\]

n <- 10;
nbite <- 2000;
mix_coefs <- seq(from=0,to=1,by=0.2)
correlations2 <- matrix(0,nrow=length(mix_coefs),ncol=1);
i <- 1;
for (coef in mix_coefs){
  for (k in 1:nbite){
    x <- rnorm(n, 0, 1);
    z <- rexp(n, 1);
    y = coef*x+(1-coef)*z;
    shapi = shapiro.test(y);
    correlations2[i] <- correlations2[i] + shapi$statistic/nbite;
  }
  
  i <- i+1;
}
plot(mix_coefs, correlations2, type="b", pch=19, col="red", xlab="Mixture coefficient: alpha", ylab="Shapiro Wilk test statistic : W")

5 Questions

There does not exist a closed form for the distribution of \(W\) under the null. However, we will prove with this exercise that \(W\) is free under the null and we motivate with theoretical considerations the rejection region of the test.

  1. Prove that \[a_{i} = - a_{n-i+1}, \quad \forall i \in [n].\] Deduce that \(\sum_{i=1}^n a_i =0.\)
  2. Prove that \(W\) is scale and translation invariant.
  3. Deduce that the statistic \(W\) is free under the null.
  4. Prove that \(W \in [0,1]\).
  5. Show that the \(W\) statistic is the squared empirical Pearson correlation coefficient between the ordered sample values \(y_{(i)}\) and the coefficients \(a_i\).

In , the Shapiro-Wilk test can be performed with the shapiro.test() function.

6 Solution

6.1 Question 1

Let us denote \(\mathbf x =(x_{(1)}, ..., x_{(n)})^{\top}\). Define the \(n \times n\)–permutation matrix \[J =\begin{bmatrix} 0 & ... & 0 & 1\\ 0 & ... & 1 & 0\\ 0 & \vdots & \vdots & \vdots \\ 1 & ... & 0 & 0 \end{bmatrix},\] whose entries are 0 except on the diagonal from bottom left to top right where the entry is 1. Used as a multiplier from the left hand side to a vector of convenient dimension, \(J\) has the effect to reverse the order of the vector entries: \[\begin{equation}\label{eq:q1}-J \mathbf x = -J \begin{bmatrix} x_{(1)} \\ \vdots \\ x_{(n)} \end{bmatrix} = \begin{bmatrix}- x_{(n)} \\ \vdots \\ -x_{(1)} \end{bmatrix}.\end{equation}\] From the equivalence \[x_{(1)} \leq ... \leq x_{(n)} \Leftrightarrow -x_{(n)} \leq ... \leq -x_{(1)},\] follows, since the \(x_i\)’s are symmetrically distributed, that the joint distribution of the \((x_{(1)}, ... , x_{(n)})\) is the same than the joint distribution of \((-x_{(n)},..., -x_{(1)})\). Consequently, using equation~, it follows that the random vectors \(\mathbf x\) and \(-J\mathbf x\) have the same distribution. That means in particular \[\mathbf m =\mathbb E(\mathbf x) = \mathbb E(-J \mathbf x) = -J \mathbf m,\] which proves that \[a_{i} = - a_{n-i+1}, \quad \forall i \in [n].\] Noticing that with an odd sample size, i.e., \(n = 2r + 1, r \in \mathbb N\), the ”middle” coefficient \(a_{r+1}\) is necessary zero, the last part of the question is straightforward.

6.2 Question 2

For any \(i \in [n]\), let \(z_i= \alpha y_{(i)} + \beta\) with \(\alpha,\beta\in \mathbb R\) (\(\alpha \neq 0\)). Then by linearity it holds \(\bar z = \alpha \bar y +\beta.\) Hence, using the quality \(\sum_{i=1}^n a_i=0\) from the previous question we get \[\begin{align*} & \dfrac{\left( \sum_{i=1}^n a_i z_{i} \right)^2}{\sum_{i=1}^n (z_i - \bar{z})^2}= \dfrac{\left( \sum_{i=1}^n a_i \alpha y_{(i)} + \beta\sum_{i=1}^n a_i \right)^2}{\sum_{i=1}^n \alpha^2(y_{(i)} - \bar{y})^2}=W. \end{align*}\] We deduce that \(W\) is invariant under translation or scaling.

6.3 Question 3

Under the null (i.e. if \(y_i \sim \mathcal N(\mu,\sigma^2)\)), the scale and translation invariance implies that the distribution of the \(W\) statistic depends only on the sample size \(n\) and does not depend on the unknown location and scale parameters \(\mu\) and \(\sigma\).

6.4 Question 4

First, note that for all \(n \in \mathbb N\), \[W =\frac{(\mathbf a^{\top} \mathbf y)^2}{(n-1)S^2_n}\geq 0.\]

Using the translation invariance of the \(W\) statistic as shown in question 2, we can assume, without loss of generality, \(\bar y= 0\). (Otherwise pass to \(\widetilde y_{(i)}:= y_{(i)} - \bar y\).) Hence, the \(W\) statistic can be reduced to \[W =\frac{(\mathbf a^{\top} \mathbf y)^2}{\sum_{i=1}^n y_i^2}.\] Since, by definition, \[\sum_{i=1}^n a_i^2 = \mathbf a^{\top}\mathbf a = \frac{\mathbf m^{\top} V^{-1}V^{-1}\mathbf m}{\mathbf m^{\top} V^{-1}V^{-1}\mathbf m}=1,\] we get from Cauchy-Schwarz inequality \[(\mathbf a^{\top} \mathbf y)^2\leq \sum_{i=1}^n a_i^2 \sum_{i=1}^n y_i^2 =\sum_{i=1}^n y_i^2 . \] Thus the upper bound of \(W\) is \(1\), while \(W = 1\) if and only if \(y_{(i)} = \lambda a_i\), \(i = 1, ... , n\) for arbitrary \(\lambda \in \mathbb R\).

We said in the introduction of the exercise that we reject the null when the statistic \(W\) takes a small value (compared to 1). Hence, the conclusion of this question leads us to think that \(W\) measures the normality of the samples \(y_{1},...,y_n\) through the “amount of colinearity” between vectors \(\mathbf y\) and \(\mathbf a\). The last question makes this statement rigorous by showing that \(W\) corresponds to the squared empirical Pearson correlation coefficient between \(\mathbf y\) and \(\mathbf a\).

6.5 Question 5

The correlation coefficient is given by \[r_{\mathbf y,\mathbf a} =\frac{ \sum_{i=1}^n (y_{(i)} -\bar y)(a_i -\bar a)}{\left[\sum_{i=1}^n (y_{i} -\bar y)^2 \sum_{i=1}^n (a_i -\bar a)^2\right]^{1/2}},\] where \(\bar a= n^{-1} \sum_{i=1}^n a_i=0\) from question 1. Remembering that, by definition, \(\sum_{i=1}^n a_i^2=1\) yields to \[\begin{align*} W &= \frac{\left(\sum_{i=1}^n a_iy_{(i)}\right)^2}{\sum_{i=1}^n (y_{i}-\bar y)^2}\\ &= \frac{\left(\sum_{i=1}^n a_iy_{(i)} -\bar y \sum_{i=1}^n a_i\right)^2}{\sum_{i=1}^n (y_{i}-\bar y)^2\sum_{i=1}^n a_i^2}\\ &= \frac{\left(\sum_{i=1}^n a_i(y_{(i)} -\bar y) \right)^2}{\sum_{i=1}^n (y_{i}-\bar y)^2\sum_{i=1}^n a_i^2}\\ &= \frac{\left(\sum_{i=1}^n (a_i-\bar a)(y_{(i)} -\bar y) \right)^2}{\sum_{i=1}^n (y_{i}-\bar y)^2\sum_{i=1}^n (a_i-\bar a)^2}\\ &=r_{\mathbf y,\mathbf a} ^2. \end{align*}\]

LS0tDQp0aXRsZTogIkludHJvZHVjdGlvbiB0byB0aGUgU2hhcGlybyBXaWxrIFRlc3QiDQpvdXRwdXQ6DQogICAgaHRtbF9kb2N1bWVudDoNCiAgICAgIGNvZGVfZG93bmxvYWQ6IHRydWUgICAgDQogICAgICB0aGVtZTogY29zbW8NCiAgICAgIHRvYzogdHJ1ZQ0KICAgICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgICBoaWdobGlnaHQ6IHRhbmdvDQogICAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCi0tLQ0KDQpUaGUgU2hhcGlyby1XaWxrIHRlc3QgaXMgYSB0ZXN0IG9mIG5vcm1hbGl0eS4gRW1waXJpY2FsbHksIHRoaXMgdGVzdCBhcHBlYXJzIHRvIGJlIG1vc3QgcG93ZXJmdWwgdGhhbiBvdGhlciBmYW1vdXMgdGVzdHMgZm9yIG5vcm1hbGl0eSBzdWNoIGFzIExpbGxpZWZvcnMgdGVzdC4gSW4gdGhlIGZvbGxvd2luZywgd2UgY29uc2lkZXIgaS5pLmQuIHJlYWxpemF0aW9ucyAkeV97MX0sLi4uLHlfbiQgb2Ygc29tZSByYW5kb20gdmFyaWFibGUgJFkkLg0KDQoNCiMgSW50dWl0aW9uIGJlaGluZCB0aGUgdGVzdA0KVGhlIGJhc2lzIGlkZWEgYmVoaW5kIHRoZSBTaGFwaXJvLVdpbGsgdGVzdCBpcyB0byBlc3RpbWF0ZSB0aGUgdmFyaWFuY2Ugb2YgdGhlIHNhbXBsZSAkKHlfaSlfezFcbGVxIGkgXGxlcSBufSQgaW4gdHdvIHdheXM6IA0KDQotIHVuZGVyIHRoZSBudWxsIChpLmUuIGlmIG9ic2VydmF0aW9ucyBhcmUgZHJhd24gZnJvbSBhIG5vcm1hbCBkaXN0cmlidXRpb24pLCB3ZSBjYW4gZXN0aW1hdGUgdGhlIHZhcmlhbmNlIHRocm91Z2ggdGhlIHNsb3BlIG9mIHRoZSByZWdyZXNzaW9uIGxpbmUgaW4gdGhlIFFRLVBsb3QNCg0KLSB1c2luZyB0aGUgc3RhbmRhcmQgZXN0aW1hdG9yIG9mIHRoZSBwb3B1bGF0aW9uIHZhcmlhbmNlICRTXjJfbiA9IFxmcmFjezF9e24tMX1cc3VtX3tpPTF9Xm4gKHlfaS1cYmFyIHkpXjIkIHdoZXJlICRcYmFyIHkgPSBuXnstMX1cc3VtX3tpPTF9Xm4geV9pJC4NCg0KQm90aCBlc3RpbWF0ZWQgdmFsdWVzIHNob3VsZCBhcHByb3hpbWF0ZWx5IGVxdWFsIGluIHRoZSBjYXNlIG9mIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBhbmQgdGh1cyBzaG91bGQgcmVzdWx0IGluIGEgcXVvdGllbnQgb2YgY2xvc2UgdG8gMS4gSWYgdGhlIHF1b3RpZW50IGlzIHNpZ25pZmljYW50bHkgbG93ZXIgdGhhbiAxIHRoZW4gdGhlIG51bGwgaHlwb3RoZXNpcyAob2YgaGF2aW5nIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbikgc2hvdWxkIGJlIHJlamVjdGVkLg0KXG1lZHNraXANCg0KTGV0IHVzIHNob3cgaW4gd2hhdCBmb2xsb3dzIGhvdyB3ZSBjYW4gZXN0aW1hdGUgdGhlIHNsb3BlIG9mIHRoZSBRUS1QbG90Lg0KDQojIFZhcmlhbmNlIGVzdGltYXRpb24gdXNpbmcgb3JkZXIgc3RhdGlzdGljcw0KT3VyIGdvYWwgaXMgdG8ga25vdyBpZiB0aGUgJHlfaSQncyBhcmUgcmVhbGl6YXRpb25zIG9mIGFuIHVuZGVybHlpbmcgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgcmFuZG9tIHZhcmlhYmxlLiBXZSBkZW5vdGUgJCh5X3soMSl9LCAuLi4sIHlfeyhuKX0pJCB0aGUgdmVjdG9yIG9mIG9yZGVyZWQgb2JzZXJ2YXRpb25zIChpbiBhc2NlbmRpbmcgb3JkZXIpLiBXZSBkZW5vdGUgJHhfezF9LC4uLix4X24kIGkuaS5kLiBzYW1wbGVzIGRyYXduIGZyb20gYSBzdGFuZGFyZCBub3JtYWwgZGlzdHJpYnV0aW9uICRcbWF0aGNhbCBOKDAsMSkkLiBBbmFsb2dvdXNseSwgd2UgZGVub3RlICR4X3soMSl9XGxlcSB4X3soMil9XGxlcSAuLi5cbGVxIHhfeyhuKX0kIHRoZSBvcmRlcmVkIHNlcXVlbmNlLiBGb3IgZWFjaCAkaSBcaW4gW25dJCwgbGV0ICRtX2k6PSBcbWF0aGJiIEVbeF97KGkpfV0uJCANCg0KSWYgdGhlICR5X2kkJ3MgY29tZSBmcm9tIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiAkXG1hdGhjYWwgTihcbXUsIFxzaWdtYV4yKSQgKHdpdGggJFxtdSBcaW4gXG1hdGhiYiBSJCwgJFxzaWdtYV4yPjAkKSwgd2UgY2FuIHdyaXRlDQpcW3lfeyhpKX09XG11ICsgXHNpZ21hIHhfeyhpKX0gPSBcbXUgKyAgXHNpZ21hIG1fe2l9ICsgXHNpZ21hICh4X3soaSl9LW1faSksXF0NCndoZXJlIHdlIGNhbiBpbnRlcnByZXQgJFxlcHNpbG9uX2k6PSh4X3soaSl9LW1faSkkIGhhcyBhIG5vaXNlIHRlcm0gYW5kIGl0IGhvbGRzDQpcWyBcbWF0aGJiIEVbXGVwc2lsb25faV09MCwgXHF1YWQgQ292KFxlcHNpbG9uX2ksXGVwc2lsb25faikgPSBcc2lnbWFeMiBDb3YoeF97KGkpfSx4X3soail9ICksIFxxdWFkIFxmb3JhbGwgaSxqIFxpbiBbbl0uIFxxdWFkICgqKVxdIA0KSGVuY2UsIHdlIGdldCB0aGF0DQpcYmVnaW57ZXF1YXRpb259IFxsYWJlbHtlcTpleHRlbmRlZC1lcX0gXG1hdGhiZiB5ID0gXGJlZ2lue2JtYXRyaXh9ICBcbWF0aGJmIDEgJiBcbWF0aGJmIG0gXGVuZHtibWF0cml4fSBcYmVnaW57Ym1hdHJpeH0gIFxtdSBcXCBcc2lnbWFeMlxlbmR7Ym1hdHJpeH0gKyBcbWF0aGJmIFxlcHNpbG9uLCBcZW5ke2VxdWF0aW9ufQ0Kd2hlcmUgJFxtYXRoYmYgeSA9KHlfeygxKX0sLi4uLHlfeyhuKX0pXntcdG9wfSQsICRcbWF0aGJmIG0gPShtX3sxfSwgLi4uLCBtX3tufSlee1x0b3B9JCwgJFxtYXRoYmYgMSA9KDEsIC4uLiwgMSlee1x0b3B9JCBhbmQgd2l0aCAkXG1hdGhiZiBcZXBzaWxvbiBcc2ltIFxtYXRoY2FsIE4oMCxcc2lnbWFeMiBWKSQgd2hlcmUgJFY9XGxlZnQoIENvdih4X3soaSl9LHhfeyhqKX0gKVxyaWdodClfe2ksan0kIGlzIHRoZSBjb3ZhcmlhbmNlIG1hdHJpeCBvZiB0aGUgc3RhbmRhcmQgbm9ybWFsDQpvcmRlciBzdGF0aXN0aWNzLiBUaGlzIHNob3dzIHRoYXQgJFxzaWdtYSQgaXMgdGhlIHNsb3BlIG9mIHRoZSBRUS1QbG90LCBuYW1lbHkgdGhlIHNsb3BlIG9mIHRoZSByZWdyZXNzaW9uIGxpbmUgb2YgdGhlIG9yZGVyZWQgJHlfeyhpKX0kJ3Mgb24gdGhlICRtX2kkLiBPbmUgY2FuIHByb3ZlIHRoYXQgdGhlIGJlc3QgbGluZWFyIHVuYmlhc2VkIGVzdGltYXRvcnMgKEJMVUVzKSBvZiB0aGUgdHdvIHBhcmFtZXRlcnMgJFxtdSQgYW5kICRcc2lnbWEkIGluDQp0aGUgZ2VuZXJhbGl6ZWQgcmVncmVzc2lvbiBtb2RlbCAkKCopJCBhcmUNClxbXGhhdCAgXG11ID0gXGZyYWN7XG1hdGhiZiAxIF57XHRvcH1WIF57LTF9eX17XG1hdGhiZiAxXntcdG9wfVZeey0xfSBcbWF0aGJmIDF9XHF1YWQgXHRleHR7YW5kfVxxdWFkICBcaGF0ICBcc2lnbWEgPSBcZnJhY3tcbWF0aGJmIG0gXntcdG9wfVYgXnstMX15fXtcbWF0aGJmIG1ee1x0b3B9Vl57LTF9IFxtYXRoYmYgbX0uXF0NCg0KIyBUaGUgU2hhcGlybyBXaWxrIHRlc3QNCg0KVGhlIHRlc3Qgc3RhdGlzdGljIGlzDQoNClxiZWdpbntlcXVhdGlvbip9IFcgPVxkZnJhY3tcbGVmdCggXHN1bV97aT0xfV5uIGFfaSB5X3soaSl9IFxyaWdodCleMn17XHN1bV97aT0xfV5uICh5X2kgLSBcYmFye3l9KV4yfSwgXGVuZHtlcXVhdGlvbip9DQoNCndoZXJlDQoNClxbICAgIFxiYXJ7eX0gOj0gXGZyYWN7MX17bn1cc3VtX3tpPTF9Xm4geV9pIFxxdWFkIFx0ZXh0e2FuZH1ccXVhZCAgXG1hdGhiZiBhOj1cZnJhY3tWIF57LTF9XG1hdGhiZiBtfXtcbGVmdChcbWF0aGJmIG1ee1x0b3B9Vl57LTF9Vl57LTF9IFxtYXRoYmYgbVxyaWdodCleezEvMn19LlxdIA0KDQpOb3RlIHRoYXQgDQpcWyhuLTEpVyA9IFxmcmFje1xoYXQgXHNpZ21hXjJ9e1Nfbl4yfSBcdGltZXMgXGZyYWN7KFxtYXRoYmYgbV57XHRvcH1WXnstMX0gXG1hdGhiZiBtKV4yfXtcbWF0aGJmIG1ee1x0b3B9Vl57LTF9Vl57LTF9IFxtYXRoYmYgbX0gPVxmcmFje1xoYXQgXHNpZ21hXjJ9e1Nfbl4yfSBcdGltZXMgXGZyYWN7XGthcHBhXjJ9e1xwc2l9LCAgXF0NCndpdGggJFxrYXBwYSA6PSBcbWF0aGJmIG1ee1x0b3B9Vl57LTF9IFxtYXRoYmYgbSQgYW5kICRccHNpIDo9IFxtYXRoYmYgbV57XHRvcH1WXnstMX1WXnstMX0gXG1hdGhiZiBtJC4NCg0KVGhhdCBpcywgdXAgdG8gYSBjb25zdGFudCwgJFckIGlzIHRoZSBzcXVhcmVkIHJhdGlvIG9mIHRoZSBiZXN0IGxpbmVhciB1bmJpYXNlZCBlc3RpbWF0b3IgKEJMVUUpICRcaGF0IFxzaWdtYSQNCm9mIHRoZSBzbG9wZSBvZiBhIHJlZ3Jlc3Npb24gbGluZSBvZiB0aGUgb3JkZXJlZCAkeV97KGkpfSQgb24gdGhlICRtX2kkIGFuZCBvZiB0aGUgZXN0aW1hdG9yIG9mIHRoZSBzdGFuZGFyZA0KZGV2aWF0aW9uICRTXjJfbiQuDQoNCg0KDQoNCiMgU3R1ZHlpbmcgdGhlIGV2b2x1dGlvbiBvZiB0aGUgU2hhcGlybyB0ZXN0IFN0YXRpc3RpYyB1c2luZyBtaXh0dXJlIG9mIGdhdXNzaWFuIGFuZCBleHBvbmVudGlhbCBkaXN0cmlidXRpb25zDQoNCldlIHZhcnkgYSBtaXhpbmcgY29lZmZpY2llbnQgJFxhbHBoYSQgYmV0d2VlbiAkMCQgYW5kICQxJCBhbmQgd2UgY29tcHV0ZSB0aGUgU2hhcGlybyB0ZXN0IHN0YXRpc3RpYyBmb3Igc2FtcGxlcyBkcmF3biBmcm9tIHRoZSBtaXh0dXJlIGRpc3RyaWJ1dGlvbiAkJFxhbHBoYSBcbWF0aGNhbCBOKDAsMSkgKyAoMS1cYWxwaGEpIFxtYXRoY2FsIEUoMSkuJCQNCg0KDQpgYGB7cn0NCm4gPC0gMTA7DQpuYml0ZSA8LSAyMDAwOw0KbWl4X2NvZWZzIDwtIHNlcShmcm9tPTAsdG89MSxieT0wLjIpDQpjb3JyZWxhdGlvbnMyIDwtIG1hdHJpeCgwLG5yb3c9bGVuZ3RoKG1peF9jb2VmcyksbmNvbD0xKTsNCmkgPC0gMTsNCmZvciAoY29lZiBpbiBtaXhfY29lZnMpew0KICBmb3IgKGsgaW4gMTpuYml0ZSl7DQogICAgeCA8LSBybm9ybShuLCAwLCAxKTsNCiAgICB6IDwtIHJleHAobiwgMSk7DQogICAgeSA9IGNvZWYqeCsoMS1jb2VmKSp6Ow0KICAgIHNoYXBpID0gc2hhcGlyby50ZXN0KHkpOw0KICAgIGNvcnJlbGF0aW9uczJbaV0gPC0gY29ycmVsYXRpb25zMltpXSArIHNoYXBpJHN0YXRpc3RpYy9uYml0ZTsNCiAgfQ0KICANCiAgaSA8LSBpKzE7DQp9DQpwbG90KG1peF9jb2VmcywgY29ycmVsYXRpb25zMiwgdHlwZT0iYiIsIHBjaD0xOSwgY29sPSJyZWQiLCB4bGFiPSJNaXh0dXJlIGNvZWZmaWNpZW50OiBhbHBoYSIsIHlsYWI9IlNoYXBpcm8gV2lsayB0ZXN0IHN0YXRpc3RpYyA6IFciKQ0KYGBgDQoNCg0KDQoNCg0KIyBRdWVzdGlvbnMgDQoNCg0KDQpUaGVyZSBkb2VzIG5vdCBleGlzdCBhIGNsb3NlZCBmb3JtIGZvciB0aGUgZGlzdHJpYnV0aW9uIG9mICRXJCB1bmRlciB0aGUgbnVsbC4gSG93ZXZlciwgd2Ugd2lsbCBwcm92ZSB3aXRoIHRoaXMgZXhlcmNpc2UgdGhhdCAkVyQgaXMgZnJlZSB1bmRlciB0aGUgbnVsbCBhbmQgd2UgbW90aXZhdGUgd2l0aCB0aGVvcmV0aWNhbCBjb25zaWRlcmF0aW9ucyB0aGUgcmVqZWN0aW9uIHJlZ2lvbiBvZiB0aGUgdGVzdC4NCg0KDQoxLiBQcm92ZSB0aGF0IFxbYV97aX0gPSAtIGFfe24taSsxfSwgIFxxdWFkIFxmb3JhbGwgaSBcaW4gW25dLlxdDQpEZWR1Y2UgdGhhdCAkXHN1bV97aT0xfV5uIGFfaSA9MC4kDQoyLiBQcm92ZSB0aGF0ICRXJCBpcyBzY2FsZSBhbmQgdHJhbnNsYXRpb24gaW52YXJpYW50Lg0KMy4gRGVkdWNlIHRoYXQgdGhlIHN0YXRpc3RpYyAkVyQgaXMgZnJlZSB1bmRlciB0aGUgbnVsbC4NCjQuIFByb3ZlIHRoYXQgJFcgXGluIFswLDFdJC4NCjUuIFNob3cgdGhhdCB0aGUgJFckIHN0YXRpc3RpYyBpcyB0aGUgc3F1YXJlZCBlbXBpcmljYWwgUGVhcnNvbiBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCBiZXR3ZWVuDQp0aGUgb3JkZXJlZCBzYW1wbGUgdmFsdWVzICR5X3soaSl9JCBhbmQgdGhlIGNvZWZmaWNpZW50cyAkYV9pJC4NCg0KSW4gXHRleHRzZntSfSwgdGhlIFNoYXBpcm8tV2lsayB0ZXN0IGNhbiBiZSBwZXJmb3JtZWQgd2l0aCB0aGUgYHNoYXBpcm8udGVzdCgpYCBmdW5jdGlvbi4NCg0KDQoNCiMgU29sdXRpb24NCg0KIyMgUXVlc3Rpb24gMQ0KTGV0IHVzIGRlbm90ZSAgJFxtYXRoYmYgeCA9KHhfeygxKX0sIC4uLiwgeF97KG4pfSlee1x0b3B9JC4gRGVmaW5lIHRoZSAkbiBcdGltZXMgbiTigJNwZXJtdXRhdGlvbiBtYXRyaXgNClxbSiA9XGJlZ2lue2JtYXRyaXh9IDAgJiAuLi4gJiAwICYgMVxcDQogICAgICAgICAgICAgICAgICAgICAwICYgLi4uICYgMSAmIDBcXA0KICAgICAgICAgICAgICAgICAgICAgMCAmIFx2ZG90cyAmIFx2ZG90cyAmIFx2ZG90cyBcXA0KICAgICAgICAgICAgICAgICAgICAgMSAmIC4uLiAmIDAgJiAwIFxlbmR7Ym1hdHJpeH0sXF0NCndob3NlIGVudHJpZXMgYXJlIDAgZXhjZXB0IG9uIHRoZSBkaWFnb25hbCBmcm9tIGJvdHRvbSBsZWZ0IHRvIHRvcCByaWdodCB3aGVyZSB0aGUgZW50cnkgaXMgMS4gVXNlZCBhcyBhIG11bHRpcGxpZXIgZnJvbSB0aGUgbGVmdCBoYW5kIHNpZGUgdG8gYSB2ZWN0b3INCm9mIGNvbnZlbmllbnQgZGltZW5zaW9uLCAkSiQgaGFzIHRoZSBlZmZlY3QgdG8gcmV2ZXJzZSB0aGUgb3JkZXIgb2YgdGhlIHZlY3RvciBlbnRyaWVzOg0KXGJlZ2lue2VxdWF0aW9ufVxsYWJlbHtlcTpxMX0tSiBcbWF0aGJmIHggPSAtSg0KXGJlZ2lue2JtYXRyaXh9IHhfeygxKX0gXFwgXHZkb3RzIFxcIHhfeyhuKX0gXGVuZHtibWF0cml4fSA9IFxiZWdpbntibWF0cml4fS0geF97KG4pfSBcXCBcdmRvdHMgXFwgLXhfeygxKX0gXGVuZHtibWF0cml4fS5cZW5ke2VxdWF0aW9ufQ0KRnJvbSB0aGUgZXF1aXZhbGVuY2UNClxbeF97KDEpfSBcbGVxIC4uLiBcbGVxIHhfeyhuKX0gXExlZnRyaWdodGFycm93ICAteF97KG4pfSBcbGVxIC4uLiBcbGVxICAteF97KDEpfSxcXQ0KZm9sbG93cywgc2luY2UgdGhlICR4X2kkJ3MgYXJlIHN5bW1ldHJpY2FsbHkgZGlzdHJpYnV0ZWQsIHRoYXQgdGhlIGpvaW50IGRpc3RyaWJ1dGlvbiBvZiB0aGUgJCh4X3soMSl9LCAuLi4gLCB4X3sobil9KSQgaXMgdGhlIHNhbWUgdGhhbiB0aGUgam9pbnQgZGlzdHJpYnV0aW9uIG9mICQoLXhfeyhuKX0sLi4uLCAteF97KDEpfSkkLiBDb25zZXF1ZW50bHksIHVzaW5nIGVxdWF0aW9uflxlcXJlZntlcTpxMX0sIGl0IGZvbGxvd3MNCnRoYXQgdGhlIHJhbmRvbSB2ZWN0b3JzICRcbWF0aGJmIHgkIGFuZCAkLUpcbWF0aGJmIHgkIGhhdmUgdGhlIHNhbWUgZGlzdHJpYnV0aW9uLiBUaGF0IG1lYW5zIGluIHBhcnRpY3VsYXINClxbXG1hdGhiZiBtID1cbWF0aGJiIEUoXG1hdGhiZiB4KSA9IFxtYXRoYmIgRSgtSiBcbWF0aGJmIHgpID0gLUogXG1hdGhiZiBtLFxdDQp3aGljaCBwcm92ZXMgdGhhdCBcW2Ffe2l9ID0gLSBhX3tuLWkrMX0sICBccXVhZCBcZm9yYWxsIGkgXGluIFtuXS5cXQ0KTm90aWNpbmcgdGhhdCB3aXRoIGFuIG9kZCBzYW1wbGUgc2l6ZSwgaS5lLiwgJG4gPSAyciArIDEsIHIgXGluIFxtYXRoYmIgTiQsIHRoZQ0K4oCdbWlkZGxl4oCdIGNvZWZmaWNpZW50ICRhX3tyKzF9JCBpcyBuZWNlc3NhcnkgemVybywgdGhlIGxhc3QgcGFydCBvZiB0aGUgcXVlc3Rpb24gaXMgc3RyYWlnaHRmb3J3YXJkLg0KDQojIyBRdWVzdGlvbiAyDQpGb3IgYW55ICRpIFxpbiBbbl0kLCBsZXQgJHpfaT0gXGFscGhhIHlfeyhpKX0gKyBcYmV0YSQgd2l0aCAkXGFscGhhLFxiZXRhXGluIFxtYXRoYmIgUiQgKCRcYWxwaGEgXG5lcSAwJCkuIFRoZW4gYnkgbGluZWFyaXR5IGl0IGhvbGRzICRcYmFyIHogPSBcYWxwaGEgXGJhciB5ICtcYmV0YS4kIEhlbmNlLCB1c2luZyB0aGUgcXVhbGl0eSAkXHN1bV97aT0xfV5uIGFfaT0wJCBmcm9tIHRoZSBwcmV2aW91cyBxdWVzdGlvbiB3ZSBnZXQNClxiZWdpbnthbGlnbip9DQomIFxkZnJhY3tcbGVmdCggXHN1bV97aT0xfV5uIGFfaSB6X3tpfSBccmlnaHQpXjJ9e1xzdW1fe2k9MX1ebiAoel9pIC0gXGJhcnt6fSleMn09IFxkZnJhY3tcbGVmdCggXHN1bV97aT0xfV5uIGFfaSBcYWxwaGEgeV97KGkpfSArIFxiZXRhXHN1bV97aT0xfV5uIGFfaSBccmlnaHQpXjJ9e1xzdW1fe2k9MX1ebiBcYWxwaGFeMih5X3soaSl9IC0gXGJhcnt5fSleMn09Vy4NClxlbmR7YWxpZ24qfQ0KV2UgZGVkdWNlIHRoYXQgJFckIGlzIGludmFyaWFudCB1bmRlciB0cmFuc2xhdGlvbiBvciBzY2FsaW5nLiANCg0KIyMgUXVlc3Rpb24gMw0KVW5kZXIgdGhlIG51bGwgKGkuZS4gaWYgJHlfaSBcc2ltIFxtYXRoY2FsIE4oXG11LFxzaWdtYV4yKSQpLCB0aGUgc2NhbGUgYW5kIHRyYW5zbGF0aW9uIGludmFyaWFuY2UgaW1wbGllcyB0aGF0IHRoZQ0KZGlzdHJpYnV0aW9uIG9mIHRoZSAkVyQgc3RhdGlzdGljIGRlcGVuZHMgb25seSBvbiB0aGUgc2FtcGxlIHNpemUgJG4kIGFuZCBkb2VzIG5vdCBkZXBlbmQgb24gdGhlDQp1bmtub3duIGxvY2F0aW9uIGFuZCBzY2FsZSBwYXJhbWV0ZXJzICRcbXUkIGFuZCAkXHNpZ21hJC4NCg0KIyMgUXVlc3Rpb24gNA0KRmlyc3QsIG5vdGUgdGhhdCBmb3IgYWxsICRuIFxpbiBcbWF0aGJiIE4kLA0KXFtXID1cZnJhY3soXG1hdGhiZiBhXntcdG9wfSBcbWF0aGJmIHkpXjJ9eyhuLTEpU14yX259XGdlcSAgMC5cXQ0KDQpVc2luZyB0aGUgdHJhbnNsYXRpb24gaW52YXJpYW5jZSBvZiB0aGUgJFckIHN0YXRpc3RpYyBhcyBzaG93biBpbiBxdWVzdGlvbiAyLCB3ZSBjYW4gYXNzdW1lLA0Kd2l0aG91dCBsb3NzIG9mIGdlbmVyYWxpdHksICRcYmFyIHk9IDAkLiAoT3RoZXJ3aXNlIHBhc3MgdG8gJFx3aWRldGlsZGUgeV97KGkpfTo9IHlfeyhpKX0gLSBcYmFyIHkkLikgSGVuY2UsIHRoZSAkVyQgc3RhdGlzdGljIGNhbg0KYmUgcmVkdWNlZCB0bw0KXFtXID1cZnJhY3soXG1hdGhiZiBhXntcdG9wfSBcbWF0aGJmIHkpXjJ9e1xzdW1fe2k9MX1ebiB5X2leMn0uXF0NClNpbmNlLCBieSBkZWZpbml0aW9uLA0KXFtcc3VtX3tpPTF9Xm4gYV9pXjIgPSBcbWF0aGJmIGFee1x0b3B9XG1hdGhiZiBhID0gXGZyYWN7XG1hdGhiZiBtXntcdG9wfSBWXnstMX1WXnstMX1cbWF0aGJmIG19e1xtYXRoYmYgbV57XHRvcH0gVl57LTF9Vl57LTF9XG1hdGhiZiBtfT0xLFxdDQp3ZSBnZXQgZnJvbSBDYXVjaHktU2Nod2FyeiBpbmVxdWFsaXR5DQpcWyhcbWF0aGJmIGFee1x0b3B9IFxtYXRoYmYgeSleMlxsZXEgXHN1bV97aT0xfV5uIGFfaV4yIFxzdW1fe2k9MX1ebiB5X2leMiA9XHN1bV97aT0xfV5uIHlfaV4yIC4gIFxdDQpUaHVzIHRoZSB1cHBlciBib3VuZCBvZiAkVyQgaXMgJDEkLCB3aGlsZSAkVyA9IDEkIGlmIGFuZCBvbmx5IGlmICR5X3soaSl9ID0gXGxhbWJkYSBhX2kkLCAkaSA9IDEsIC4uLiAsIG4kIGZvciBhcmJpdHJhcnkgJFxsYW1iZGEgXGluIFxtYXRoYmIgUiQuDQoNCldlIHNhaWQgaW4gdGhlIGludHJvZHVjdGlvbiBvZiB0aGUgZXhlcmNpc2UgdGhhdCB3ZSByZWplY3QgdGhlIG51bGwgd2hlbiB0aGUgc3RhdGlzdGljICRXJCB0YWtlcyBhIHNtYWxsIHZhbHVlIChjb21wYXJlZCB0byAxKS4gSGVuY2UsIHRoZSBjb25jbHVzaW9uIG9mIHRoaXMgcXVlc3Rpb24gbGVhZHMgdXMgdG8gdGhpbmsgdGhhdCAqKiRXJCBtZWFzdXJlcyB0aGUgbm9ybWFsaXR5IG9mIHRoZSBzYW1wbGVzICR5X3sxfSwuLi4seV9uJCB0aHJvdWdoIHRoZSAiYW1vdW50IG9mIGNvbGluZWFyaXR5IiBiZXR3ZWVuIHZlY3RvcnMgJFxtYXRoYmYgeSQgYW5kICRcbWF0aGJmIGEkKiouDQpUaGUgbGFzdCBxdWVzdGlvbiBtYWtlcyB0aGlzIHN0YXRlbWVudCByaWdvcm91cyBieSBzaG93aW5nIHRoYXQgJFckIGNvcnJlc3BvbmRzIHRvIHRoZSBzcXVhcmVkIGVtcGlyaWNhbCBQZWFyc29uIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IGJldHdlZW4gJFxtYXRoYmYgeSQgYW5kICRcbWF0aGJmIGEkLg0KDQojIyBRdWVzdGlvbiA1DQpUaGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgaXMgZ2l2ZW4gYnkNClxbcl97XG1hdGhiZiB5LFxtYXRoYmYgYX0gPVxmcmFjew0KXHN1bV97aT0xfV5uICh5X3soaSl9IC1cYmFyIHkpKGFfaSAtXGJhciBhKX17XGxlZnRbXHN1bV97aT0xfV5uICh5X3tpfSAtXGJhciB5KV4yIFxzdW1fe2k9MX1ebiAoYV9pIC1cYmFyIGEpXjJccmlnaHRdXnsxLzJ9fSxcXQ0Kd2hlcmUgJFxiYXIgIGE9IG5eey0xfSBcc3VtX3tpPTF9Xm4gYV9pPTAkIGZyb20gcXVlc3Rpb24gMS4gUmVtZW1iZXJpbmcgdGhhdCwgYnkgZGVmaW5pdGlvbiwgJFxzdW1fe2k9MX1ebiBhX2leMj0xJCB5aWVsZHMgdG8NClxiZWdpbnthbGlnbip9DQpXICY9IFxmcmFje1xsZWZ0KFxzdW1fe2k9MX1ebiBhX2l5X3soaSl9XHJpZ2h0KV4yfXtcc3VtX3tpPTF9Xm4gKHlfe2l9LVxiYXIgeSleMn1cXA0KJj0gXGZyYWN7XGxlZnQoXHN1bV97aT0xfV5uIGFfaXlfeyhpKX0gLVxiYXIgeSBcc3VtX3tpPTF9Xm4gYV9pXHJpZ2h0KV4yfXtcc3VtX3tpPTF9Xm4gKHlfe2l9LVxiYXIgeSleMlxzdW1fe2k9MX1ebiBhX2leMn1cXA0KJj0gXGZyYWN7XGxlZnQoXHN1bV97aT0xfV5uIGFfaSh5X3soaSl9IC1cYmFyIHkpIFxyaWdodCleMn17XHN1bV97aT0xfV5uICh5X3tpfS1cYmFyIHkpXjJcc3VtX3tpPTF9Xm4gYV9pXjJ9XFwNCiY9IFxmcmFje1xsZWZ0KFxzdW1fe2k9MX1ebiAoYV9pLVxiYXIgYSkoeV97KGkpfSAtXGJhciB5KSBccmlnaHQpXjJ9e1xzdW1fe2k9MX1ebiAoeV97aX0tXGJhciB5KV4yXHN1bV97aT0xfV5uIChhX2ktXGJhciBhKV4yfVxcDQomPXJfe1xtYXRoYmYgeSxcbWF0aGJmIGF9IF4yLg0KXGVuZHthbGlnbip9DQoNCg==