To go back to the Home page, click here.


The Workforce dataset shows the labour force participation rates for males and females over time for several countries in Europe and North America. The data for this example was taken from the worldbank website.

library("gplots")
library("tidyverse")
library("ggpubr")
df <- read.csv('../../data/workforce.csv');
df <- na.omit(df);
colnames(df) <- c('Country', 'M2000' , 'M2013', 'F2000', 'F2013', 'Continent');

2 Difference in female workforce between continents in 2013

Is there a difference in female labour force participation rates in 2013 between Europe and North America?

To answer this question, we use again a T-test.

ttest2 <- t.test(df$F2013[df$Continent == 'Europe'], df$F2013[df$Continent != 'Europe'], alternative = "two.sided", conf.level = 0.95)
ttest2
## 
##  Welch Two Sample t-test
## 
## data:  df$F2013[df$Continent == "Europe"] and df$F2013[df$Continent != "Europe"]
## t = -1.8841, df = 13.893, p-value = 0.08065
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -10.9929599   0.7151821
## sample estimates:
## mean of x mean of y 
##  52.36111  57.50000

The p-value is approximately 0.08. Hence, for a test with level 0.05, we would be lead to accept the null hypothesis. However, our dataset contains only the female labour force participation rates in 2013 for ten countries, which seems rather small to conclude with certainty. To draw our final conclusion, we should find more data.

LS0tDQp0aXRsZTogIkZpc2hlciBhbmQgU3R1ZGVudCBUZXN0czogV29ya2ZvcmNlIGRhdGFzZXQiDQpvdXRwdXQ6DQogICAgaHRtbF9kb2N1bWVudDoNCiAgICAgIGNvZGVfZG93bmxvYWQ6IHRydWUgICAgDQogICAgICB0aGVtZTogY29zbW8NCiAgICAgIHRvYzogdHJ1ZQ0KICAgICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgICBoaWdobGlnaHQ6IHRhbmdvDQogICAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCi0tLQ0KDQpUbyBnbyBiYWNrIHRvIHRoZSBIb21lIHBhZ2UsIGNsaWNrIFtoZXJlXShodHRwczovL3F1ZW50aW4tZHVjaGVtaW4uZ2l0aHViLmlvL0VOUEMtU0RBLykuDQoNCjxicj48L2JyPg0KDQpUaGUgV29ya2ZvcmNlIGRhdGFzZXQgc2hvd3MgdGhlIGxhYm91ciBmb3JjZSBwYXJ0aWNpcGF0aW9uIHJhdGVzIGZvciBtYWxlcyBhbmQgZmVtYWxlcyBvdmVyIHRpbWUgZm9yIHNldmVyYWwgY291bnRyaWVzIGluIEV1cm9wZSBhbmQgTm9ydGggQW1lcmljYS4gVGhlIGRhdGEgZm9yIHRoaXMgZXhhbXBsZSB3YXMgdGFrZW4gZnJvbSB0aGUgW3dvcmxkYmFuayB3ZWJzaXRlXShodHRwOi8vd2RpLndvcmxkYmFuay5vcmcvdGFibGUvMi4yKS4NCg0KYGBge3IgZXZhbD1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCmluc3RhbGwucGFja2FnZXMoJ3RpZHl2ZXJzZScpDQppbnN0YWxsLnBhY2thZ2VzKCJncGxvdHMiKQ0KaW5zdGFsbC5wYWNrYWdlcygiZ2dwdWJyIikNCmBgYA0KDQpgYGB7ciBtZXNzYWdlID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRSwgZWNobyA9IFRSVUV9IA0KbGlicmFyeSgiZ3Bsb3RzIikNCmxpYnJhcnkoInRpZHl2ZXJzZSIpDQpsaWJyYXJ5KCJnZ3B1YnIiKQ0KZGYgPC0gcmVhZC5jc3YoJy4uLy4uL2RhdGEvd29ya2ZvcmNlLmNzdicpOw0KZGYgPC0gbmEub21pdChkZik7DQpjb2xuYW1lcyhkZikgPC0gYygnQ291bnRyeScsICdNMjAwMCcgLCAnTTIwMTMnLCAnRjIwMDAnLCAnRjIwMTMnLCAnQ29udGluZW50Jyk7DQpgYGANCg0KDQojIEdsb2JhbCB0cmVuZHMgaW4gdGhlIGZlbWFsZSB3b3JrZm9yY2Ugb3ZlciB0aW1lDQoNCg0KKipIYXMgdGhlcmUgIGJlZW4gIGEgIGNoYW5nZSAgaW4gIHJhdGVzICBvZiBmZW1hbGVzICBwYXJ0aWNpcGF0aW5nICBpbiAgdGhlICBsYWJvdXIgIGZvcmNlIChSRlBMRikgIGFjcm9zcyAgYm90aCAgY29udGluZW50cyAgZnJvbSAgMjAwMCAgdG8gMjAxMyA/KioNCg0KDQpUbyBhbnN3ZXIgdGhpcyBxdWVzdGlvbiwgd2UgcGxhbiB0byBjb25kdWN0IGEgU3R1ZGVudCB0ZXN0LiBUbyB0cnVzdCB0aGUgcmVzdWx0IG9idGFpbmVkIHdpdGggdGhpcyBhcHByb2FjaCwgd2UgbmVlZCB0byBmaXJzdCBjaGVjayB0aGF0IHRoZSBhc3N1bXB0aW9ucyBvZiB0aGUgVC10ZXN0IGhvbGQgZm9yIG91ciBkYXRhLg0KV2UgZmlyc3QgbmVlZCB0byBzdHVkeSB0aGUgZGlzdHJpYnV0aW9uIG9mIHRoZSBzYW1wbGVzLg0KDQojIyBDaGVja2luZyB0aGUgbm9ybWFsaXR5IGFzc3VtcHRpb24NCg0KIyMjIEEgcXVhbGl0YXRpdmUgYXBwcm9hY2gNCg0KYGBge3J9DQpnZ2RlbnNpdHkoZGYkRjIwMDAsIA0KICAgICAgICAgIG1haW4gPSAiRGVuc2l0eSBwbG90IG9mIHJhdGVzIG9mIGZlbWFsZXMgcGFydGljaXBhdGluZyBpbiB0aGUgbGFib3VyIGZvcmNlIGluIDIwMDAiLA0KICAgICAgICAgIHhsYWIgPSAiUkZQTEYiKTsNCmdnZGVuc2l0eShkZiRGMjAxMywgDQogICAgICAgICAgbWFpbiA9ICJEZW5zaXR5IHBsb3Qgb2YgcmF0ZXMgb2YgZmVtYWxlc3BhcnRpY2lwYXRpbmcgaW4gdGhlIGxhYm91ciBmb3JjZSBpbiAyMDEzIiwNCiAgICAgICAgICB4bGFiID0gIlJGUExGIikNCmBgYA0KDQpUaGlzIGZpcnN0IHZpc3VhbCByZXByZXNlbnRhdGlvbiBkb2VzIG5vdCBhbGxvdyB1cyB0byBkaXJlY3RseSBjb25jbHVkZSB0aGF0IHRoZSBhc3N1bXB0aW9uIG9mIGdhdXNzaWFuIGRpc3RyaWJ1dGlvbnMgaXMgbm90IGNvcnJlY3QuIFRvIGdldCBtb3JlIGluZm9ybWF0aW9uLCB3ZSBjb250aW51ZSBvdXIgYW5hbHlzaXMgdXNpbmcgUS1RIHBsb3RzLg0KDQpgYGB7cn0NCmdncXFwbG90KGRmJEYyMDAwLCB0aXRsZT0nUS1RIHBsb3QgZm9yIHRoZSByYXRlcyBvZiBmZW1hbGVzIHBhcnRpY2lwYXRpbmcgaW4gdGhlIGxhYm91ciBmb3JjZSBpbiAyMDAwJyk7DQpnZ3FxcGxvdChkZiRGMjAxMywgdGl0bGU9J1EtUSBwbG90IGZvciB0aGUgcmF0ZXMgb2YgZmVtYWxlcyBwYXJ0aWNpcGF0aW5nIGluIHRoZSBsYWJvdXIgZm9yY2UgaW4gMjAxMycpDQpgYGANCg0KVGhlIFEtUSBwbG90cyBzZWVtcyB0byBjb25maXJtIG91ciBmaXJzdCBpbnR1aXRpb246IHRoZSBnYXVzc2lhbiBhc3N1bXB0aW9uIGxvb2tzIHJlYXNvbmFibGUuDQoNCiMjIyBBIHF1YW50aXRhdGl2ZSBhcHByb2FjaA0KDQpUbyBjb25maXJtIHRoZSB2aXN1YWwgcmVzdWx0cyBvZiB0aGUgcHJldmlvdXMgc2VjdGlvbiwgd2UgY29uZHVjdCBhIHN0YXRpc3RpY2FsIHRlc3QgdG8gZHJhdyBvdXIgZmluYWwgY29uY2x1c2lvbiByZWdhcmRpbmcgdGhlIGRpc3RyaWJ1dGlvbiBvZiBvdXIgZGF0YS4NCg0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdChkZiRGMjAwMCk7DQpzaGFwaXJvLnRlc3QoZGYkRjIwMTMpDQpgYGANCg0KQm90aCB0ZXN0IGdpdmUgYSBwLXZhbHVlIGdyZWF0ZXIgdGhhbiAwLjA1LCBpbXBseWluZyB0aGF0IHRoZSBkaXN0cmlidXRpb24gb2YgdGhlIGRhdGEgYXJlIG5vdCBzaWduaWZpY2FudGx5IGRpZmZlcmVudCBmcm9tIG5vcm1hbCBkaXN0cmlidXRpb24uIEluIG90aGVyIHdvcmRzLCB3ZSBjYW4gYXNzdW1lIHRoZSBub3JtYWxpdHkuDQoNCiMjIENoZWNraW5nIHRoZSBhc3N1bXB0aW9uIHRoYXQgYm90aCBzZXF1ZW5jZXMgb2YgdGhlIHNhbWUgdmFyaWFuY2UNCg0KVG8gYXBwbHkgYSBULXN0dWRlbnQsIHdlIG5lZWQgdG8gZnVydGhlciBjaGVjayB0aGF0IGJvdGggc2VxdWVuY2VzIG9mIHZhcmlhYmxlcyBoYXZlIGNvbXBhcmFibGUgdmFyaWFuY2VzLiBUbyBtYWtlIGl0IHJpZ29yb3VzLCB3ZSBjb25kdWN0IGEgRmlzaGVyIHRlc3QuDQoNCmBgYHtyfQ0KdGZpc2hlcjEgPC0gdmFyLnRlc3QoZGYkRjIwMDAsIGRmJEYyMDEzLCBhbHRlcm5hdGl2ZSA9ICJ0d28uc2lkZWQiLCBjb25mLmxldmVsID0gMC45NSk7DQp0ZmlzaGVyMTsgICANCmBgYA0KDQpXZSBjYW5ub3QgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMsIHdoaWNoIG1lYW5zIHRoYXQsIGFzc3VtaW5nIHRoYXQgdGhlIGFzc3VtcHRpb25zIG9mIHRoZSBGaXNoZXIgdGVzdCBob2xkLCB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSB2YXJpYW5jZXMgb2YgYm90aCBzZXF1ZW5jZXMgaXMgbm90IHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQuIA0KSGVuY2UsIGl0IGlzIHJlYXNvbmFibGUgdG8gdXNlIGEgU3R1ZGVudCBUZXN0IHRvIHRlc3QgYSBwb3RlbnRpYWwgY2hhbmdlIGluIHJhdGVzIG9mIGZlbWFsZXMgcGFydGljaXBhdGluZyBpbiB0aGUgbGFib3VyIGZvcmNlIGFjcm9zcyBib3RoIGNvbnRpbmVudHMgZnJvbSAyMDAwIGFuZCAyMDEzLg0KDQojIyBDb25jbHVzaW9uIHVzaW5nIHRoZSBTdHVkZW50IFRlc3QNCg0KYGBge3J9ICAgICAgICAgICAgDQp0dGVzdDEgPC0gdC50ZXN0KGRmJEYyMDAwLCBkZiRGMjAxMywgYWx0ZXJuYXRpdmUgPSAidHdvLnNpZGVkIiwgcGFpcmVkID0gVFJVRSwgY29uZi5sZXZlbCA9IDAuOTUpDQp0dGVzdDENCmBgYA0KDQpTaW5jZSBwPDAuMDAxLCAgd2UgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgYW5kIHdlIGNvbmNsdWRlIHRoYXQgdGhlcmUgaXMgZXZpZGVuY2Ugb2YgYW4gaW5jcmVhc2UgaW4gdGhlIHJhdGVzIG9mIGZlbWFsZXMgcGFydGljaXBhdGluZyBpbiB0aGUgbGFib3VyIGZvcmNlIG92ZXIgdGltZSBhY3Jvc3MgYm90aCBFdXJvcGUgYW5kIE5vcnRoIEFtZXJpY2EuDQoNCg0KIyBEaWZmZXJlbmNlIGluIGZlbWFsZSB3b3JrZm9yY2UgYmV0d2VlbiBjb250aW5lbnRzIGluIDIwMTMNCg0KKipJcyB0aGVyZSBhIGRpZmZlcmVuY2UgaW4gZmVtYWxlIGxhYm91ciBmb3JjZSBwYXJ0aWNpcGF0aW9uIHJhdGVzIGluIDIwMTMgYmV0d2VlbiBFdXJvcGUgYW5kIE5vcnRoIEFtZXJpY2E/KioNCg0KVG8gYW5zd2VyIHRoaXMgcXVlc3Rpb24sIHdlIHVzZSBhZ2FpbiBhIFQtdGVzdC4NCg0KYGBge3J9DQp0dGVzdDIgPC0gdC50ZXN0KGRmJEYyMDEzW2RmJENvbnRpbmVudCA9PSAnRXVyb3BlJ10sIGRmJEYyMDEzW2RmJENvbnRpbmVudCAhPSAnRXVyb3BlJ10sIGFsdGVybmF0aXZlID0gInR3by5zaWRlZCIsIGNvbmYubGV2ZWwgPSAwLjk1KQ0KdHRlc3QyDQpgYGANCg0KVGhlIHAtdmFsdWUgaXMgYXBwcm94aW1hdGVseSAwLjA4LiBIZW5jZSwgZm9yIGEgdGVzdCB3aXRoIGxldmVsIDAuMDUsIHdlIHdvdWxkIGJlIGxlYWQgdG8gYWNjZXB0IHRoZSBudWxsIGh5cG90aGVzaXMuDQpIb3dldmVyLCBvdXIgZGF0YXNldCBjb250YWlucyBvbmx5IHRoZSBmZW1hbGUgbGFib3VyIGZvcmNlIHBhcnRpY2lwYXRpb24gcmF0ZXMgaW4gMjAxMyBmb3IgdGVuIGNvdW50cmllcywgd2hpY2ggc2VlbXMgcmF0aGVyIHNtYWxsIHRvIGNvbmNsdWRlIHdpdGggY2VydGFpbnR5LiBUbyBkcmF3IG91ciBmaW5hbCBjb25jbHVzaW9uLCB3ZSBzaG91bGQgZmluZCBtb3JlIGRhdGEuDQoNCg0KDQo=